Submissions to Scholars Junction will be closed starting Monday, December 21, as we begin migrating to a new platform.

    • Login
    View Item  
    •   Scholars Junction
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Scholars Junction
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    My Account

    Login Register

    About

    About This Repository Deposit Your Work Policies and Terms of Use Contact Us More Scholarly Communication Services

    Browse

    Entire Repository Communities & Collections Issue Date Authors Titles Subjects This Collection Issue Date Authors Titles Subjects

    Large Scale Computer Investigations of Non-Equilibrium Surface Growth for Surfaces from Parallel Discrete Event Simulations

    View/ Open
    etd-04192004-140532.pdf (1.695 Mb )
    Author
    Verma, Poonam Santosh
    Item Type
    Thesis
    Advisor
    Novotny, Mark A.
    Committee
    Monts, David L.
    Lestrade, John P.
    Kim, Seong-Gon
    Metrics
    
    Abstract
    The asymptotic scaling properties of conservative algorithms for parallel discrete-event simulations (e.g.: for spatially distributed parallel simulations of dynamic Monte Carlo for spin systems) of one-dimensional systems with system size $L$ is studied. The particular case studied here is the case of one or two elements assigned to each processor element. The previously studied case of one element per processor is reviewed, and the two elements per processor case is presented. The key concept is a simulated time horizon which is an evolving non equilibrium surface, specific for the particular algorithm. It is shown that the flat-substrate initial condition is responsible for the existence of an initial non-scaling regime. Various methods to deal with this non-scaling regime are documented, both the final successful method and unsuccessful attempts. The width of this time horizon relates to desynchronization in the system of processors. Universal properties of the conservative time horizon are derived by constructing a distribution of the interface width at saturation.
    Degree
    Master of Science
    College
    College of Arts and Science
    Department
    Department of Physics and Astronomy.
    URI
    https://hdl.handle.net/11668/20633
    Collections
    • Theses and Dissertations
    Show full item record
    Mississippi State University Libraries
    395 Hardy Rd
    P.O. Box 5408, Mississippi State, MS 39762-5408
    (662) 325-7668
    (662) 325-0011
    (662) 325-8183
    Contact repository admin Report a problem Terms of use Privacy policy Accessibility MSU Legal
     

     

    Mississippi State University Libraries
    395 Hardy Rd
    P.O. Box 5408, Mississippi State, MS 39762-5408
    (662) 325-7668
    (662) 325-0011
    (662) 325-8183
    Contact repository admin Report a problem Terms of use Privacy policy Accessibility MSU Legal