Submissions to Scholars Junction will be closed starting Monday, December 21, as we begin migrating to a new platform.

    • Login
    View Item  
    •   Scholars Junction
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Scholars Junction
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    My Account

    Login Register

    About

    About This Repository Deposit Your Work Policies and Terms of Use Contact Us More Scholarly Communication Services

    Browse

    Entire Repository Communities & Collections Issue Date Authors Titles Subjects This Collection Issue Date Authors Titles Subjects

    Optical Fiber Humidity Sensor Based on Evanescent Wave Scattering

    View/ Open
    etd-07092004-112625.pdf (1013. Kb )
    Author
    Xu, Lina.
    Item Type
    Thesis
    Advisor
    Ma, Wenchao
    Committee
    Monts, David L
    Tao, Shiquan
    Metrics
    
    Abstract
    An optical fiber humidity sensor has been devised using a porous sol-gel silica (PSGS) coating as a transducer. Evanescent wave scattering (EWS) in the PSGS coating. PSGS particles are highly hydrophilic and have a strong tendency to absorb water molecules from the surrounding environment. The absorbed water molecules form a thin layer on the inner surface of the pores inside the porous silica and enhance EWS, from which an indicatory signal can be obtained. The humidity sensor presented in this thesis has a fast response, is reversible, low cost, and has a broad dynamic relative humidity range from 3.6?0-6% to 100% or humidity range from 1.2ppm to 30000ppm. Because of its multiple advantages, including immunity to electromagnetic interference, resistance to corrosive environments, and high sensitivity, this humidity sensor has various applications. In soil moisture sensing, this humidity sensor can avoid the interference caused by compounds in soil water. For electrical transformer moisture sensing, this humidity sensor can avoid the effect of electromagnetic fields.
    Degree
    Master of Science
    Major
    Physics
    College
    College of Arts and Sciences
    Department
    Department of Physics and Astronomy.
    URI
    https://hdl.handle.net/11668/20257
    Collections
    • Theses and Dissertations
    Show full item record
    Mississippi State University Libraries
    395 Hardy Rd
    P.O. Box 5408, Mississippi State, MS 39762-5408
    (662) 325-7668
    (662) 325-0011
    (662) 325-8183
    Contact repository admin Report a problem Terms of use Privacy policy Accessibility MSU Legal
     

     

    Mississippi State University Libraries
    395 Hardy Rd
    P.O. Box 5408, Mississippi State, MS 39762-5408
    (662) 325-7668
    (662) 325-0011
    (662) 325-8183
    Contact repository admin Report a problem Terms of use Privacy policy Accessibility MSU Legal