Submissions to Scholars Junction will be closed starting Monday, December 21, as we begin migrating to a new platform.

    • Login
    View Item  
    •   Scholars Junction
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Scholars Junction
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    My Account

    Login Register

    About

    About This Repository Deposit Your Work Policies and Terms of Use Contact Us More Scholarly Communication Services

    Browse

    Entire Repository Communities & Collections Issue Date Authors Titles Subjects This Collection Issue Date Authors Titles Subjects

    Exploiting Spatial and Spectral Information in Hyperdimensional Imagery

    View/ Open
    etd-07062012-113220.pdf (2.335 Mb )
    Author
    Lee, Matthew Allen
    Item Type
    Dissertation
    Advisor
    Bruce, Lori M.
    Committee
    Bridges, Susan
    Aanstoos, James
    Prasad, Saurabh
    Metrics
    
    Abstract
    In this dissertation, new digital image processing methods for hyperdimensional imagery are developed and experimentally tested on remotely sensed Earth observations and medical imagery. The high dimensionality of the imagery is either inherent due to the type of measurements forming the image, as with imagery obtained with hyperspectral sensors, or the result of preprocessing and feature extraction, as with synthetic aperture radar imagery and digital mammography. In the first study, two omni-directional adaptations of gray level co-occurrence matrix analysis are developed and experimentally evaluated. The adaptations are based on a previously developed rubber band straightening transform that has been used for analysis of segmented masses in digital mammograms. The new methods are beneficial because they can be applied to imagery where the region of interest is either poorly segmented or not segmented. The methods are based on the concept of extracting circular windows s around each pixel in the image which are radially resampled to derive rectangular images. The images derived from the resampling are then suitable for standard GLCM techniques. The methods were applied to both remotely sensed synthetic aperture radar imagery, for the purpose of automated detection of landslides on earthen levees, and to digital mammograms, for the purpose of automated classification of masses as either benign or malignant. Experimental results show the newly developed methods to be valuable for texture feature extraction and classification of un-segmented objects. In the second study, a new technique of using spatial information in spectral band grouping for remotely sensed hyperspectral imagery is developed and experimentally tested. The technique involves clustering the spectral bands based on similarity of spatial features extracted from each band. The newly developed technique is evaluated in automated classification systems that utilize a single classifier and systems that utilize multiple classifiers combined with decision fusion. The systems are experimentally tested on remotely sensed imagery for agricultural applications. The spatial-spectral band grouping approach is compared to uniform band windowing and spectral only band grouping. The results show that the spatial-spectral band grouping method significantly outperforms both of the comparison methods, particularly when using multiple classifiers with decision fusion.
    Degree
    Doctor of Philosophy
    Major
    Computer Engineering
    College
    Bagley College of Engineering
    Department
    Department of Electrical and Computer Engineering
    URI
    https://hdl.handle.net/11668/20223
    Collections
    • Theses and Dissertations
    Show full item record
    Mississippi State University Libraries
    395 Hardy Rd
    P.O. Box 5408, Mississippi State, MS 39762-5408
    (662) 325-7668
    (662) 325-0011
    (662) 325-8183
    Contact repository admin Report a problem Terms of use Privacy policy Accessibility MSU Legal
     

     

    Mississippi State University Libraries
    395 Hardy Rd
    P.O. Box 5408, Mississippi State, MS 39762-5408
    (662) 325-7668
    (662) 325-0011
    (662) 325-8183
    Contact repository admin Report a problem Terms of use Privacy policy Accessibility MSU Legal