Submissions to Scholars Junction will be closed starting Monday, December 21, as we begin migrating to a new platform.

    • Login
    View Item  
    •   Scholars Junction
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Scholars Junction
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    My Account

    Login Register

    About

    About This Repository Deposit Your Work Policies and Terms of Use Contact Us More Scholarly Communication Services

    Browse

    Entire Repository Communities & Collections Issue Date Authors Titles Subjects This Collection Issue Date Authors Titles Subjects

    Laser Spectroscopy for Material Characterization: Chemical Analysis Using Laser-Induced Breakdown Spectroscopy (Libs)

    View/ Open
    etd-04042014-145658.pdf (2.295 Mb )
    Author
    Ayyalasomayajula, Krishna Kanth
    Item Type
    Dissertation
    Advisor
    Monts, David L.
    Singh, Jagdish P.
    Committee
    McIntyre, Dustin L.
    Srinivasan, Kalyan K.
    Berg, Matthew
    Metrics
    
    Abstract
    Laser-Induced Breakdown Spectroscopy (LIBS) is a powerful tool for performing chemical analysis measurements of materials, such as slurries, soils, plastics and powder samples. The LIBS technique has proven to be sensitive, selective and robust for rapid, in situ analysis. The focus of this dissertation is the optimization of laser spectroscopic sensing methodologies for material characterization. The applications of the LIBS technique to slurry samples is very challenging due to the water content (~80%). A new sample preparation method called “spin-on-glass” was adopted to reduce the water content in slurry samples and improve the LIBS signal. The feasibility of using the new sampling method with a LIBS system was tested by applying multivariate analysis to the LIBS spectral data. The calibration results demonstrated that the LIBS technique with the new sampling method could successfully predict the elemental concentrations of slurry samples qualitatively and quantitatively. The possibility of developing a LIBS-based sensor system for total carbon quantification in soil samples was studied. The soil samples were studied in pellet form and the calibration models were developed by using simple linear regression (SLR) and multiple linear regression (MLR) analysis. It was found that both SLR- and MLR-based calibrations successfully predicted the carbon concentration in an unknown sample with relative accuracy (RA) within 8%. The LIBS experimental setup was designed, developed and tested for the determination of elemental impurities in plastic calibration standards that are used in dual-energy computed tomography (CT) scanning for petrophysical applications. Univariate calibration (UC) and multiple linear regression (MLR) analysis were used to develop calibration models. From this study, it was concluded that MLR improved the calibration results and data derived from the LIBS analysis enhanced the predictive capabilities of dual-energy CT scanning in general. A comparative study was performed for quantification of strontium (Sr) in an aluminum (Al) batch with both the atomic and molecular LIBS emissions. The calibration models were developed using SLR analysis and the limits of detection (LOD) were obtained. The study confirmed that molecular LIBS could be used for quantification of Sr in a binary mixture.
    Degree
    Doctor of Philosophy
    College
    Bagley College of Engineering
    Department
    Department of Physics & Astronomy
    URI
    https://hdl.handle.net/11668/17988
    Collections
    • Theses and Dissertations
    Show full item record
    Mississippi State University Libraries
    395 Hardy Rd
    P.O. Box 5408, Mississippi State, MS 39762-5408
    (662) 325-7668
    (662) 325-0011
    (662) 325-8183
    Contact repository admin Report a problem Terms of use Privacy policy Accessibility MSU Legal
     

     

    Mississippi State University Libraries
    395 Hardy Rd
    P.O. Box 5408, Mississippi State, MS 39762-5408
    (662) 325-7668
    (662) 325-0011
    (662) 325-8183
    Contact repository admin Report a problem Terms of use Privacy policy Accessibility MSU Legal