Submissions to Scholars Junction will be closed starting Monday, December 21, as we begin migrating to a new platform.

    • Login
    View Item  
    •   Scholars Junction
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Scholars Junction
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    My Account

    Login Register

    About

    About This Repository Deposit Your Work Policies and Terms of Use Contact Us More Scholarly Communication Services

    Browse

    Entire Repository Communities & Collections Issue Date Authors Titles Subjects This Collection Issue Date Authors Titles Subjects

    Defect Prediction using Exception Handling Method Call Structures

    View/ Open
    etd-03182015-153743.pdf (6.971 Mb )
    Author
    Sawadpong, Puntitra
    Item Type
    Dissertation
    Advisor
    Allen, Edward B.
    Committee
    Williams, Byron J.
    Dampier, David A.
    Niu, Nan
    Metrics
    
    Abstract
    The main purpose of exception handling mechanisms is to improve software robustness by handling exceptions when they occur. However, empirical evidence indicates that improper implementation of exception handling code can be a source of faults in software systems. There is still limited empirical knowledge about the relationship between exception handling code and defects. In this dissertation, we present three case studies investigating defect densities of exception handling code. The results show that in every system under study, the defect density of exception handling code was significantly higher than the defect density of overall source code and normal code. The ability to predict the location of faults can assist in directing quality enhancement efforts to modules that are likely to have faults. This information can be used to guide test plans, narrow the test space, and improve software quality. We hypothesize that complicated exception handling structure is a predictive factor that is associated with defects. To the best of our knowledge, no study has addressed the relationship between the attributes of exception handling method call structures and defect occurrence, nor has prior work addressed fault prediction. We extract exception-based software metrics from the structural attributes of exception handling call graphs. To find out whether there are patterns of relationship between exception-based software metrics and fault-proneness, we propose a defect prediction model using exception handling call structures. We apply the J48 algorithm, which is the Java implementation of the C4.5 algorithm, to build exception defect prediction models. In two out of three systems under study, the results reveal that there are logical patterns of relationships between most class level exception metrics and fault-proneness. The accuracy of our prediction models is comparable to the results of defect prediction model studies in the literature. It was observed that our approach has somewhat worse predictive accuracy when a system has low average defects per class.
    Degree
    Doctor of Philosophy
    Major
    Computer Science and Engineering
    College
    Bagley College of Engineering
    Department
    Department of Computer Science and Engineering
    URI
    https://hdl.handle.net/11668/17377
    Collections
    • Theses and Dissertations
    Show full item record
    Mississippi State University Libraries
    395 Hardy Rd
    P.O. Box 5408, Mississippi State, MS 39762-5408
    (662) 325-7668
    (662) 325-0011
    (662) 325-8183
    Contact repository admin Report a problem Terms of use Privacy policy Accessibility MSU Legal
     

     

    Mississippi State University Libraries
    395 Hardy Rd
    P.O. Box 5408, Mississippi State, MS 39762-5408
    (662) 325-7668
    (662) 325-0011
    (662) 325-8183
    Contact repository admin Report a problem Terms of use Privacy policy Accessibility MSU Legal