Evaluation of the Stoneville Parabolic Subsoiler

By

G. R. Tupper

Agricultural Engineer

MAFES Delta Branch Experiment Station

Mississippi Agricultural and Forestry Experiment Station

Louis N. Wise, Acting Director

July 1977
Evaluation of the Stoneville Parabolic Subsoiler

Highlights and Conclusions

Cotton yields were increased by subsoiling, with most of the increase obtained at the second harvest. Average taproot length was increased by subsoiling and average residual soil strength was still lower for subsoiled treatments about 11 months after subsoiling. Lint yield and taproot length were positively correlated in all treatments, lint yield and residual soil strength were negatively correlated in all treatments and taproot length and residual soil strength were negatively correlated in all treatments except subsoiling with the Stoneville Parabolic Subsoiler.

The two most important facts established by the trials are: residual soil strength and taproot length did not limit lint yields significantly on plots subsoiled with the Stoneville Parabolic Subsoiler and tractor wheel slippage was 43.4 percent less in pulling the parabolic subsoiler than in pulling the conventional subsoiler.

Subsoiling has increased cotton yields, especially on sandy loam and silt loam soils where soil compaction is a problem. Deep tillage has resulted in significant increases in cotton yields where soil compaction problems limit water intake and storage and root development (5, 9, 12, 18 and 20). Subsoiling a fine sandy loam soil with a hard pan increased cotton yields over 100 percent in the Mississippi Delta in a 1954 test (7).

Precision tillage, subsoiling under the drill row, and bedding in the row operation have increased cotton yields in sandy and fine sandy loam soils (2). Cotton yields were shown to be proportional to the decrease in soil strength in the till resulting from precision tillage (3). Research indicated that roots could penetrate 90 to 95 percent of a fine sandy loam soil where a precision tillage system was used but could penetrate only about 30 percent of the soil when a conventional system was used (4).

Greacen (6) studied the interactions of soil strength, moisture tension, and the porosity of clay soils. Soil strength and moisture tension increased as soil compaction increased and porosity of soil decreased as compaction increased. Thus, increasing soil compaction resulted in limited plant growth because it produced undesirable changes in these three important soil characteristics.

Vomocil, et al (19) measured the rate at which water infiltrated soil before and after a tractor had been in operation on the soil. Increasing drawbar pull was used to increase wheel slippage and compaction. The infiltration rate was reduced when soil compaction was increased by wheel slippage. A decrease in water-infiltration rate of soil usually increases water runoff and erosion; thus, excessive compaction presents water and soil conservation problems. Sievers, et al (13) concluded from their work that losses of fertilizers and organic insecticides could be partially controlled by reducing runoff and controlling erosion.

Osman (10) found that moving an inclined plane through soil compressed it until its maximum shear strength was reached. A
A wedge-shaped mass of soil was sheared from the soil bulk when failure occurred. Tanner (16) found that the approach angle of an inclined plane affects both the normal pressure on the tool and the amount of soil disturbed by the tool. He found that average normal pressure decreased as approach angle¹ of the tool decreased and that this relationship was associated with reduced draft.

Payne and Tann (11) concluded that tines narrower than two inches tend to slice through the soil rather than lift it. Distance of soil disturbance beyond the sides of a tool was relatively insensitive for tines two or more inches wide. They concluded that draft was relatively insensitive to approach angles of 20° to 50° but increased very rapidly as approach angles exceeded 50°. They also found that soil provided a component force that assisted tool penetration when tines were inclined at less than 50° to 55°—at greater approach angles the component force opposed penetration. Tanner’s work at the National Tillage Machinery Laboratory confirmed these conclusions (Table 1). A tool operated with an approach angle less than 55° usually resulted in a greater upheaval of the soil than a tool operated with an approach angle greater than 55°.

Sohne (14) found that concavely curved tines were more effective than straight tines in breaking soil into smaller elements. Osmon (10) found that draft of curved tines in soils for a particular rake angle increased with the amount of curvature and lies between the maximum and minimum limits of the approach angles.

Subsoiler Design

The basic information developed by the research described above was incorporated into the Stoneville Parabolic Subsoiler designed at the MAFES Delta Branch in 1972 (17). The subsoiler standard (Figure 1) was designed as a parabolic curve with a long and gradual increase in slope, from 22° at the foot to 50° at the soil surface, when operating at a 16-inch depth. The foot was a conventional three-inch design with a 22° approach angle and hard upper and lower surfaces. Tool bar clearance from the bottom of the foot was 32½ inches. The standards were cut from 1½-inch mild steel plate.

Tractor-mounted implements with a steeper line of draft are advantageous because greater weight transfer to the rear wheels reduces wheel slippage (Heitshu, 1952). The foot of the parabolic subsoiler standard is further forward in the operating position than is the foot of a conventional subsoiler. The subsoiler designed with the center stance moved forward 12 inches. The two design factors were incorporated into the Stoneville Parabolic Subsoiler to obtain a steeper line of draft required for greater weight transfer to tractor wheels needed to reduce wheel slippage.

Table 1. A summary of D. W. Tanner’s work using a chisel tine¹ in three soils at the USDA National Tillage Machinery Laboratory, Auburn, Alabama.

<table>
<thead>
<tr>
<th>Approach angle</th>
<th>Average draft</th>
<th>Average vertical forces²</th>
<th>Resultant forces</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>lbs</td>
<td>lbs</td>
<td>lbs</td>
</tr>
<tr>
<td>20</td>
<td>63</td>
<td>-41</td>
<td>75</td>
</tr>
<tr>
<td>48</td>
<td>100</td>
<td>-15</td>
<td>101</td>
</tr>
<tr>
<td>76</td>
<td>181</td>
<td>37</td>
<td>185</td>
</tr>
<tr>
<td>90</td>
<td>224</td>
<td>76</td>
<td>237</td>
</tr>
<tr>
<td>104</td>
<td>260</td>
<td>113</td>
<td>283</td>
</tr>
<tr>
<td>132</td>
<td>306</td>
<td>205</td>
<td>368</td>
</tr>
</tbody>
</table>

¹Rectangular plate tines 2 inches wide, 6 inches deep, covering the range of inclination to the horizontal of 20°-132° were drawn through Lakeland sand, Hiwassee sandy loam, and Loido clay in soil bins at the N.T.M.L., Auburn, Alabama.

²A negative sign denotes a downdraft on the tool and a positive sign denotes updraft.

¹A 90° approach angle represents a tool operated in a vertical position.
Figure 1. The Stoneville Parabolic Subsoiler.
Field Tests

Tests on Bosket fine sandy loam soil were conducted at the MAFES Delta Branch in 1974 and 1975. Three treatments were arranged in a randomized complete block design with four replications. Plot size for each treatment was six rows 40 inches wide and 100 feet long. Treatment of each plot in 1974 was repeated in 1975. Cultural practices on plots were identical except for treatment differences.

Treatments were: (1) no subsoiling, (2) subsoiling with a conventional subsoiler—16 inches deep in the drill (Figure 2), and (3) subsoiling with the Stoneville Parabolic Subsoiler—16 inches deep in the drill. Subsoiling was done on February 28, 1974 and January 30, 1975.

Seedbed preparation consisted of subsoiling (as required by treatments) and hipping twice over the old stubble (15). Nitrogen, as a 32 percent urea-ammonium nitrate solution, was applied at the rate of 80 lb/A after the first hipping. The seedbed was knocked down with a bed conditioner (Do-all) ahead of the planter.

Twenty pounds per acre of ‘Stoneville 213’ acid delinted seed were planted on April 26, 1974 and April 28, 1975. Diuron was applied for preemergence weed control. Conventional cultivation and postemergence weed control practices were used on all plots. Insecticides were applied by air if needed. The tests were defoliated at maturity and the two center rows of each plot were spindle picked twice each year. Samples were ginned at a 20-saw gin with a standard equipment sequence (1,2).

Results and Discussion

Seed cotton yields in 1974 were higher (P < .05) on plots subsoiled with the parabolic subsoiler than on plots that were not subsoiled. This difference more than offset the smaller difference in 1975 in the two-year average yield of plots subsoiled with the parabolic subsoiler were higher than yields for plots that were not subsoiled (Table 2). The only significant difference between subsoilers was in 1972 when total lint yield was higher for plots subsoiled with the parabolic subsoiler.

Earliness, expressed as a percentage of lint harvested at third pick, generally was delayed by subsoiling but differences in it from first harvest did not differ significantly by treatment in either year. Total lint yield in 1974 was highest from plots subsoiled with the parabolic subsoiler and the two-year average was higher for the types of subsoilers than for no subsoiling.

Taproots were longer on cotton from plots subsoiled with both conventional and parabolic subsoilers. Differences between subsoiling treatments were not signif.

Figure 2. The conventional subsoiler used in this test.

2Cotton was ginned at the U. S. Cotton Ginning Research Laboratory at Stoneville, Mississippi.
but taproots of plants from plots subsoiled with the parabolic subsoiler were slightly longer and straighter (Figure 3).

Residual soil strength (measured about 11 months after subsoiling and when soil moisture was high) was not significantly lower (P < .05) for subsoiled plots in 1974. However, significant differences in 1975 more than offset the smaller differences in 1974 and the two-year averages were significantly lower for subsoiled plots than for plots that were not subsoiled. Differences between type of subsoiler were not significant.

Computed relationships of (1) lint yield and taproot length, (2) lint yield and residual soil strength and (3) taproot length and residual soil strength reveal a positive correlation of taproot length and lint yield for all treatments, a

<table>
<thead>
<tr>
<th>Subsoiling method</th>
<th>Seed Cotton</th>
<th>Lint</th>
<th>Percent of Lint Harvested</th>
<th>Avg. taproot length</th>
<th>Residual soil strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
<td>2nd</td>
<td>Total</td>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>1974 none</td>
<td>2250</td>
<td>542b²</td>
<td>2792b</td>
<td>723</td>
<td>164b</td>
</tr>
<tr>
<td>conventional</td>
<td>2357</td>
<td>630ab</td>
<td>2987ab</td>
<td>737</td>
<td>187ab</td>
</tr>
<tr>
<td>parabolic</td>
<td>2235</td>
<td>736a</td>
<td>3071a</td>
<td>759</td>
<td>226a</td>
</tr>
<tr>
<td>1975 none</td>
<td>2500</td>
<td>697b</td>
<td>3197</td>
<td>790</td>
<td>236b</td>
</tr>
<tr>
<td>conventional</td>
<td>2431</td>
<td>908a</td>
<td>3339</td>
<td>786</td>
<td>235a</td>
</tr>
<tr>
<td>parabolic</td>
<td>2541</td>
<td>882a</td>
<td>3423</td>
<td>771</td>
<td>322a</td>
</tr>
<tr>
<td>2 yr avg none</td>
<td>2375</td>
<td>620b</td>
<td>2995b</td>
<td>757</td>
<td>200b</td>
</tr>
<tr>
<td>conventional</td>
<td>2394</td>
<td>769a</td>
<td>3163a</td>
<td>752</td>
<td>256a</td>
</tr>
<tr>
<td>parabolic</td>
<td>2438</td>
<td>809a</td>
<td>3247a</td>
<td>765</td>
<td>274a</td>
</tr>
</tbody>
</table>

1Measurements made about 11 months after subsoiling and when soil moisture was high.

²Values in each column followed by the same letter are not significantly different (P < .05) as determined by Duncan's New Multiple Range Test.
negative correlation of residual soil strength and lint yield for all treatments and a negative correlation of residual soil strength and taproot length for all treatments except subsampling with the parabolic subsoiler (Table 3). Correlations of (1) lint yield and taproot length, (2) lint yield and residual soil strength and (3) taproot length and residual soil strength were not significant for plots subsampled with the parabolic subsoiler.

Taproot length was a significantly limiting factor in lint yields from the non-subsoiled plots and soil strength was a significantly limiting factor in taproot length. Soil strength was a significantly limiting factor in lint yield and in taproot length on plots subsampled with the conventional subsoiler. Taproot length and soil strength were not significantly limiting factors in total lint yield from plots subsampled with the parabolic subsoiler, and soil strength did not limit taproot length.

Horsepower requirements are reduced with the lower apparent angle of the parabolic subsoiler shank because the shank exerts an upward shearing force on the soil rather than the forward compressive force exerted by the concave approach angle of the conventional subsoiler shank.

Wheel slippage of the tractor pulling a three-shank conventional subsoiler 16 inches deep was 13 percent; for the same tractor pulling the parabolic subsoiler, this depth, 7.7 percent (a reduction of 43.4 percent).

Limitations of Study

Results reported in this publication are based on data from only two years of observation on the one soil type. The years were relatively wet and maximum benefits from subsampling were not anticipated. The parabolic subsoiler will be tested further, on other soil types and under moisture conditions more conducive to benefits from subsoling.

Table 3. Relationship of (1) lint yield and taproot length, (2) lint yield and residual soil strength and (3) taproot length and residual soil strength, cotton grown on plots of Bosket fine sandy loam soil, without subsampling or subsampled with conventional or the Stoneville Parabolic Subsoiler, MAFES Delta Branch, 1974 and 1975.

<table>
<thead>
<tr>
<th>Number of observations</th>
<th>Regression equation</th>
<th>Correlation coefficient</th>
<th>(r^2 X 100)</th>
<th>Level of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments Combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>L = 788 + 24.2 R</td>
<td>0.405</td>
<td>16.4</td>
<td>1%</td>
</tr>
<tr>
<td>48</td>
<td>L = 1180 - .42 S</td>
<td>-0.409</td>
<td>16.7</td>
<td>1%</td>
</tr>
<tr>
<td>48</td>
<td>R = 12.9 - .0095 S</td>
<td>-0.554</td>
<td>30.7</td>
<td>0.1%</td>
</tr>
<tr>
<td>No Subsoiling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>L = 683 + 39.6 R</td>
<td>0.489</td>
<td>23.9</td>
<td>10%</td>
</tr>
<tr>
<td>16</td>
<td>L = 1018 - .12 S</td>
<td>-0.100</td>
<td>1.0</td>
<td>N.S.</td>
</tr>
<tr>
<td>16</td>
<td>R = 10.5 - .0070 S</td>
<td>-0.467</td>
<td>21.8</td>
<td>10%</td>
</tr>
<tr>
<td>Conventional Subsoiler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>L = 825 + 19.7 R</td>
<td>0.265</td>
<td>7.0</td>
<td>N.S.</td>
</tr>
<tr>
<td>16</td>
<td>L = 1267 - .65 S</td>
<td>-0.598</td>
<td>35.8</td>
<td>2%</td>
</tr>
<tr>
<td>16</td>
<td>R = 12.2 - .0071 S</td>
<td>-0.491</td>
<td>24.1</td>
<td>10%</td>
</tr>
<tr>
<td>Stoneville Parabolic Subsoiler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>L = 940 + 9.7 R</td>
<td>0.121</td>
<td>1.5</td>
<td>N.S.</td>
</tr>
<tr>
<td>16</td>
<td>L = 1139 - .27 S</td>
<td>-0.244</td>
<td>6.0</td>
<td>N.S.</td>
</tr>
<tr>
<td>16</td>
<td>R = 9.9 + .0007 S</td>
<td>0.049</td>
<td>0.2</td>
<td>N.S.</td>
</tr>
</tbody>
</table>

1Percent of dependent variable explained by the independent variable.
L = total lint yield harvested (lbs/A).
R = average taproot length (inches).
S = residual soil strength (lbs/sq in).

Mississippi State University does not discriminate on the grounds of race, color, religion, sex or national origin.

Under the provisions of Title IX of the Educational Amendments of 1972, Mississippi State University does not discriminate on the basis of sex in its educational programs or activities with respect to admissions or employment. Inquiries concerning the application of these provisions may be referred to Dr. T. K. Martin, Vice President, 610 Allen Hall, Drawer J, Mississippi State, Mississippi, 39762, or to the Director of the Office for Civil Rights of the Department of Health, Education and Welfare.