REAL TIME MODELING, SIMULATION AND VALIDATION OF PROTECTIVE RELAYS

By

Ankush Saran

A Thesis
Submitted to the Faculty of
Mississippi State University
in Partial Fulfillment of the Requirements
for the Degree of Master of Science
in Electrical Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

December 2009
REAL TIME MODELING, SIMULATION AND VALIDATION OF PROTECTIVE RELAYS

By

Ankush Saran

Approved:

Anurag K. Srivastava
Assistant Research Professor of Electrical and Computer Engineering
(Director of Thesis and Major Advisor)

Noel N. Schulz
Professor of Electrical and Computer Engineering
(Committee Member)

Herbert L. Ginn
Assistant Professor of Electrical and Computer Engineering
(Committee Member)

James E. Fowler
Professor and Director of Graduate Studies, Electrical and Computer Engineering

Sarah A. Rajala
Dean of Bagley College of Engineering

Name: Ankush Saran
The protection system plays an important role in the power system to detect the fault, isolate the faulted zone and restore the power supply to the healthy part. Terrestrial power systems (TPS) as well as shipboard power system (SPS) test cases are developed to conduct hardware in the loop (HIL) and the software in the loop (SIL) test using commercial relays and a Real Time Digital Simulator (RTDS). The comparison of the HIL and SIL simulation results were used to validate the develop software overcurrent relay model.

This research work is further extended to implement multiple relay operation and coordination tests on the SPS and TPS using multiple commercial hardware overcurrent relays as well as multiple software relay models. In addition to modeling overcurrent relay, a differential relay was also modeled using LabVIEW. The relay model was tested for different types of fault conditions.
DEDICATION

This thesis work is dedicated to my mother and father
ACKNOWLEDGMENTS

I would like to thank my major advisor Dr. Anurag K. Srivastava for his constant support, keen interest and valuable advice, which kept me motivated throughout the research work. I would sincerely like to thank Dr. Noel N. Schulz and Dr. Herbert Ginn for being on my graduate committee and helping me with their valuable suggestions.

I would like to acknowledge the financial support provided by the Office of Naval Research (ONR) for funding this research work.

I would like to extend my special thanks to Florida State University for providing the specifications of the shipboard power system, Mississippi State University (MSU) alumni’s Chengfeng Zhang, Sunil Kumar Palla and Vamsi Krishna Vijapurapu and my colleagues, Padmavathy Kankanala, Krishnanjan Gubba Ravikumar, Vinoth Mohan and Udita Singh.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Overview of Protection System</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Why Protection Scheme is required in the Power System</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Thesis Objective</td>
<td>3</td>
</tr>
<tr>
<td>1.6 Thesis Organization</td>
<td>6</td>
</tr>
<tr>
<td>II. BACKGROUND AND LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Previous Work</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1 Hardware in the Loop platform</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2 Protective Relay Modeling</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3 Multiple Relay Coordination</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Protection Schemes</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1 Protective Relays</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2 Protection Scheme Selection</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Hardware and Software Tools</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1 Real Time Digital Simulator (RTDS)</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1.1 RTDS Hardware</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1.2 RTDS Software (RSCAD)</td>
<td>17</td>
</tr>
<tr>
<td>2.4.2 SEL 351S Overcurrent Relay</td>
<td>19</td>
</tr>
<tr>
<td>2.4.3 GE D60 Distance Relay</td>
<td>20</td>
</tr>
<tr>
<td>2.4.4 LabVIEW Software</td>
<td>21</td>
</tr>
</tbody>
</table>
2.5 Test Case Power Systems ...21
 2.5.1 Shipboard Power System (SPS) Characteristics22
 2.5.2 Terrestrial Power System (TPS) Characteristics24
 2.5.2.1 Two-Bus Power System ..24
 2.5.2.2 Eight-Bus Power System ..25
 2.6 Hardware-in-the-Loop (HIL) Test ..27
 2.7 Software-in-the-Loop (SIL) Test ..30
 2.8 Multiple Relay Coordination in a System32
 2.9 Summary ...33

III. HARDWARE-IN-THE-LOOP (HIL) ...34

 3.1 Introduction ..34
 3.2 SEL 351S Overcurrent Relay Protection ..34
 3.2.1 Settings of the SEL 351S Overcurrent Relay35
 3.3 General Electric D60 Distance Relay Protection39
 3.4 Hardware-in-the-Loop (HIL) Setup ..41
 3.5 Fault Inception Logic ..45
 3.6 Circuit Breaker Control Logic for HIL and SIL Test46
 3.7 Hardware-in-the-Loop Test Using SEL 351S Overcurrent Relay and RTDS ...47
 3.7.1 HIL test on eight-bus power system ..47
 3.7.2 HIL test on shipboard power system54
 3.7.3 HIL test on two-bus power system ..57
 3.8 Hardware-in-the-Loop Test using GE D60 Distance Relay and RTDS ...59
 3.8.1 HIL test on eight-bus power system ..59
 3.9 Summary ...64

IV. SOFTWARE RELAY MODEL DEVELOPMENT65

 4.1 Introduction ..65
 4.2 Software Model of Overcurrent Relay in RSCAD65
 4.2.1 Analog Signal Sampler ...66
 4.2.1 Relay Logic to Open and Reclose the Breaker67
 4.2.3 Circuit Breaker Control Logic for SIL Test69
 4.2.4 Basic Operation of SIL test ..69
 4.3 Software-in-the-Loop Test using RTDS ...69
 4.3.1 SIL test on eight-bus power system69
 4.3.2 SIL test on shipboard power system74
 4.3.3 SIL test on two-bus power system ..76
 4.4 Comparison of HIL and SIL Results ...77
 4.5 LabVIEW Differential Relay Modeling ..81
 4.5.1 Analog and Digital Filter ...82
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 S-R Flip Flop</td>
<td>44</td>
</tr>
<tr>
<td>3.2 Tripping, Open and Reclose Time for BRK1 during HIL</td>
<td>63</td>
</tr>
<tr>
<td>4.1 Tripping, Open and Reclose Time for BRK1 and BRK2 during HIL & SIL</td>
<td>78</td>
</tr>
<tr>
<td>4.2 Tripping, Open and Reclose Time for BRK1 & BRK2 during HIL & SIL</td>
<td>79</td>
</tr>
<tr>
<td>4.3 Tripping, Open and Reclose Time for BRK1 during HIL and SIL</td>
<td>80</td>
</tr>
<tr>
<td>5.1 Relay Tripping, Breakers Opening and Reclosing Time for SPS</td>
<td>133</td>
</tr>
<tr>
<td>5.2 Relay Tripping, Breakers Opening and Reclosing Time for Eight-bus System</td>
<td>134</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Overview of Thesis work</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Basic Overcurrent Protection Scheme [10]</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Real Time Digital Simulator (RTDS) [7]</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>RSCAD File Manager [7]</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>RSCAD/Draft File Menu [7]</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>RSCAD/RunTime toolbar [7]</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>SEL 351S Overcurrent Relay [26]</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>GE D60 Distance Relay [33]</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Shipboard Power System in RSCAD</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>Two-Bus Power System in RSCAD</td>
<td>25</td>
</tr>
<tr>
<td>2.10</td>
<td>Eight-Bus Power System in RSCAD [23]</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>Block Diagram of Hardware-in-the-Loop Test [23]</td>
<td>28</td>
</tr>
<tr>
<td>2.12</td>
<td>HIL Simulation Using RTDS and SEL 351S Relay [27]</td>
<td>29</td>
</tr>
<tr>
<td>2.13</td>
<td>HIL Simulation Using RTDS and GE D60 Relay</td>
<td>30</td>
</tr>
<tr>
<td>2.14</td>
<td>Block Diagram of Software-in-the-Loop Test [23]</td>
<td>31</td>
</tr>
<tr>
<td>2.15</td>
<td>SIL Simulation Using RTDS and Software Relay Model [47]</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Communication Settings as defined in Relay settings [26]</td>
<td>36</td>
</tr>
</tbody>
</table>
3.2 Group settings of the SEL 351S Relay ...36
3.3 CT and PT ratios as specified in relay settings ...37
3.4 Pick up Value of Current as defined in Relay Settings..37
3.5 Reclosing relay Setting Feature in SEL 351S Relay ..38
3.6 Output Contact Settings in SEL 351S Relay ...38
3.7 DAC Components in RSCAD Library [27]...41
3.8 Digital Input Port, Word to Bit conversion block in RSCAD43
3.9 S-R Flip Flops, Timer and Bit to Word Conversion Block in RSCAD44
3.10 Fault Inception Control Logic ..45
3.11 Circuit Breaker Control logic for HIL and SIL Test..46
3.12 CT Currents at No Fault ...47
3.13 BRK1 and BRK2 Status at No Fault ..48
3.14 CT Currents after SLG Fault ...48
3.15 Trip, Open and Reclose Signal for BRK1 and BRK2 after SLG Fault49
3.16 CT Currents after L-L-G Fault ..50
3.17 BRK1 and BRK2 Status after L-L-G Fault ..50
3.18 Trip, Open and Reclose Signal for BRK1 and BRK2 after L-L-G Fault51
3.19 CT Currents after L-L-L-G Fault ...52
3.20 BRK1 and BRK2 Status after L-L-L-G Fault ...52
3.21 Trip, Open and Reclose Signal for BRK1 and BRK2 after L-L-L-G Fault53
3.22 CT Currents at No Fault ...54
3.23 BRK1 and BRK2 Status at No Fault ..54
4.10 Trip, Open and Reclose Signal for BRK1 and BRK2 after L-L-L-G Fault........75
4.11 CT current after L-L-L-G fault on phase A B C ..76
4.12 Trip, Open and Reclose Signals for BRK1 after L-L-L-G Fault77
4.14 Block diagram of the components of differential relay82
4.15 LabVIEW Differential Relay in Internal Model ..84
4.16 Power system model with fault on the bus..85
4.17 L-G fault on Phase A (Inside the protection zone) ...86
4.18 Power system model with fault on transmission line..87
4.19 L-G fault on Phase A (Outside the protection zone) ..87
5.1 DAC Components in RSCAD Library ...90
5.2 Breaker Logic to Control BRK1 and BRK3 ...91
5.3 Modified Eight-Bus System in RSCAD ..93
5.4 CT1 and CT3 Burden Currents at no fault condition ...94
5.5 CT1 currents, BRK1 and BRK2 Trip, Open and Reclose Signals after L-L-L-G ..96
5.6 CT3 currents, BRK3 and BRK4 Trip, Open and Reclose Signals after L-L-L-G ..97
5.7 Modified Shipboard Power System in RSCAD ..98
5.8 CT1 and CT3 Burden Currents at no fault condition ..99
5.9 CT1 currents, BRK1 and BRK2 Trip, Open & Reclose Signals after L-L-L-G ..100
5.10 CT3 currents, BRK3 and BRK4 Trip, Open & Reclose Signals after L-L-L-G ..101
5.11 RMS Calculator Block in RSCAD ...102
5.11 CT1 currents, BRK1 and BRK2 Trip, Open & Reclose Signals after L-L-L-G ..104
5.12 CT3 currents, BRK3 and BRK4 Trip, Open & Reclose Signals after L-L-L-G ..105
5.13 CT1 currents, BRK1 and BRK2 Trip, Open & Reclose Signals after L-L-L-G ..107
5.15 CT3 currents, BRK3 and BRK4 Trip, Open & Reclose Signals after L-L-L-G ..108
5.16 Modified Shipboard Power System for Hardware Relay Coordination110
5.17 CT1 and CT2 Currents at No Fault Condition..111
5.18 Operation of BRK1 and BRK2 after FAULT 1 ...112
5.19 CT1 & CT2 currents after L-L-L-G FAULT 1 ...112
5.20 BRK1 & BRK2 operation after L-L-L-G FAULT 1 ..113
5.21 Operation of BRK2 and BRK3 after FAULT 2 ..114
5.22 CT1 & CT2 currents after L-L-L-G FAULT 2 ...114
5.23 BRK2 & BRK3 operation after L-L-L-G FAULT 2 ..115
5.24 Modified eight-bus Power System for Hardware Relay Coordination116
5.25 CT1 and CT2 Currents at No Fault Condition..117
5.26 Operation of BRK1 and BRK2 after FAULT 1 ...118
5.27 CT1 & CT2 currents after L-L-L-G FAULT 1 ...118
5.28 BRK1 & BRK2 operation after L-L-L-G FAULT 1 ..119
5.29 Operation of BRK1 and BRK3 after FAULT 2 ..120
5.30 CT1 & CT2 currents after L-L-L-G FAULT 2 ...120
5.31 BRK1 & BRK3 operation after L-L-L-G FAULT 2 ..121
5.32 Modified Software Overcurrent Relay Model for Relay Coordination122
5.33 Operation of BRK1 and BRK2 after FAULT 1 .. 124
5.34 CT1 & CT2 currents after L-L-L-G FAULT 1 .. 124
5.35 BRK1 & BRK2 operation after L-L-L-G FAULT 1 .. 125
5.36 Operation of BRK2 and BRK3 after FAULT 2 ... 126
5.37 CT1 & CT2 currents after L-L-L-G FAULT 2 ... 126
5.38 BRK2 & BRK3 operation after L-L-L-G FAULT 2 127
5.39 Operation of BRK1 and BRK2 after FAULT 1 ... 129
5.40 CT1 & CT2 currents after L-L-L-G FAULT 1 ... 129
5.41 BRK1 & BRK2 operation after L-L-L-G FAULT 1 130
5.42 Operation of BRK1 and BRK3 after FAULT 2 ... 131
5.43 CT1 & CT2 currents after L-L-L-G FAULT 2 ... 131
5.44 BRK1 & BRK3 operation after L-L-L-G FAULT 2 132
CHAPTER I
INTRODUCTION

1.1 Introduction

A shipboard power system (SPS) plays a vital role in the electric ship, which is utilized for supplying power to different loads present on the ship such as the communication system, navigation system, pulsed weapons and propulsion system. Maintaining the continuity of power supply under varied conditions is a challenge and an effective, efficient as well as economical protection scheme is the first step for SPS to maintain the continuity of power supply.

The main requirements for the protection of any power system and especially for SPS are dependability and rapid fault isolation. The shipboard power system needs to provide power to the healthy part of the ship all the time even in adverse conditions. Protective devices used in the protection scheme sense the fault and immediately take an action to isolate the faulted zones. After the fault is cleared, the isolated parts of the SPS are restored back and supplied with power. The isolation of the unhealthy zone and restoration of power after a fault is cleared on the SPS are handled by the protection system.
1.2 Overview of Protection System

The main aims of a protection system are: quick detection of faulted zone, isolation of the unhealthy zone while supplying power to the healthy zone and restoration of the power to the isolated zone after clearing of the fault. A protection system should ensure the proper tripping of the circuit breakers present in the power system. The protection system consists of protective devices like circuit breakers, protective relays, fuses etc. There are different types of relays available for utility use like differential relay, distance or impedance relay and overcurrent relay. The protection system, which has mainly been studied and developed in this thesis work, is based on the overcurrent relay protection. Directional overcurrent relay operates the circuit breaker upon the occurrence of a fault based on the basic principle that when the fault current magnitude goes beyond the threshold current (as specified in the relay setting) then the trip signal is generated by the relay to open the circuit breaker. The protection schemes are explained in detail in Chapter II of this thesis.

1.3 Why Protection Scheme is required in the Power System

The shipboard power system is a complex system and needs to maintain the continuity of power supply in every part of the ship at all the time consistently. The shipboard and terrestrial power systems are susceptible to different types of fault, which may occur due to short circuit, overloading, over current, or over voltage resulting in the loss of power supply. A protection system takes care of such scenarios and takes quick actions in order to avoid catastrophic circumstances in the system. Protective devices like fuses are used in the smaller system while circuit breakers operated by relays are used in
the large power system. The protection scheme utilized in the power system should act according to the fault intensity and location. In other words, if a high intensity fault occurs in a system for a longer duration then the chances of damage to the system are more so the protection scheme should act fast in time as compared to the short duration fault condition, which is less severe or intense.

1.4 Problem Statement

The objective of this work here was to determine the characteristics, ratings, and settings of the protective devices to minimize fault effects on the system. Shipboard power systems have different characteristics compared to terrestrial power system. There is a need of integrated modeling and simulation of shipboard power system with an embedded protection system. To do integrated modeling and simulation, a relay model needs to be developed. To validate these relay models the hardware in the loop simulation technique is established.

1.5 Thesis Objective

The circumstances causing undesired behavior are usually unpredictable; however, sound design and preventive maintenance can reduce the likelihood of system problems. The electrical system, therefore, should be designed and maintained to protect itself automatically. The objectives of electrical system protection are summarized as:

1. Limit the extent and duration of service interruption whenever equipment failure, human error, or adverse natural events occur on any part of the system

2. Minimize damage to the system components involved in the failure.
The present day power systems are highly complex and the continuity of power supply has become a necessary requirement. In order to maintain the power supply continuity at all the time from the power system, a protection system with high efficiency, consistency and economy is required which can detect the fault immediately and takes the remedial measures as quickly as possible. The main objective of this work is to integrate the power, control and protection system to develop an integrated protection scheme. The overcurrent protection scheme is selected to implement on the shipboard power system (SPS) as well as on the terrestrial power system (TPS). The test case systems are built in RSCAD software, which will be explained in the Chapter II of this thesis. The shipboard and terrestrial systems are selected so that the protection scheme can be tested on both the shipboard power system as well as the terrestrial power system, which are completely different in their topology. Figure 1.1 gives an overview of the tasks that have been accomplished during this thesis work.

The first step towards the objective was to set up a hardware interface to conduct the hardware in the loop (HIL) test on the power system test cases using protective relay and Real Time Digital Simulator (RTDS). The protective relays from two vendors are used to conduct the HIL test on SPS and TPS. The second step was to develop the software overcurrent relay model and test it for the same test case power systems for similar fault scenarios as software in the loop (SIL) test. The HIL and SIL simulation results are compared to validate the software model of overcurrent relay.
After the validation of the software overcurrent relay model, the next step is to conduct the more complex applications in the power system protection like multiple relay operation, relay coordination etc in the SPS and TPS. In multiple relay operation, multiple numbers of relays are used to protect different parts of the power system during
fault conditions while in relay coordination technique, different relays are made to operate in a timely manner in order to provide primary protection for its own zone and back up protection for the other zone. The simulation results of the multiple hardware relay operation and relay coordination tests provide an outline to modify the software overcurrent relay model.

In this thesis work, the LabVIEW software was also used in order to develop a software differential relay model. The developed differential relay model was successfully tested for different fault conditions.

1.6 Thesis Organization

This thesis consists of seven chapters. Chapter I gives an overview of the work done in this thesis. Chapter II will give a literature review, an introduction to test cases as well as software and hardware tools. Chapter II also gives detailed information about how the HIL and SIL test are conducted in real time.

Chapter III explains the HIL test using SEL 351S overcurrent relay (or GE D60 distance relay) and Real Time Digital Simulator (RTDS). The interfacing of the software model of test case power system compiled on RTDS with the hardware relay and relay settings are also explained in this chapter. This chapter also presents the simulation results for the real time HIL test conducted on the terrestrial as well as on the shipboard power system using SEL 351S overcurrent relay (or GE D60 distance relay). Chapter IV illustrates the step-by-step procedure to design the software model of SEL 351S overcurrent relay and how it is implemented to perform the SIL test on the test case power system. The results of the SIL test for different test cases are presented and the
comparison of the results of the HIL and SIL results validates the relay model. The procedures to develop the LabVIEW differential relay model including the simulation result are presented. Chapter V explains how the hardware and software model of relays together can be used at different locations in test cases to protect the power system. This chapter shows the simulation results for the multiple relay and relay coordination tests conducted on the shipboard as well as on the eight-bus power system.

Chapter VI concludes the thesis by providing a summary of all the work done in this thesis and proposing some of the potential future work.
CHAPTER II
BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

This chapter gives an introduction and background of various topics needed to perform research work in this thesis work. Different protection schemes implemented in the power system are briefly explained and the importance of the overcurrent protection scheme is explained in detail. The specifications of the terrestrial and shipboard power system test cases in RSCAD software are explained in detail. The hardware and software tools like RTDS, RSCAD software, SEL 351 overcurrent relay, GE D60 distance relay, and LabVIEW software are also discussed. An overview of the importance of the hardware–in-the-loop and software-in-the-loop test is also presented.

2.2 Previous Work

This part of the chapter gives an overview of the previous work on the real time HIL simulation and related work.
2.2.1 Hardware in the Loop platform

Zhang and Vijapurapu et al. [10] [11] had created a test bed platform to simulate the hardware in the loop test in real time using SEL 421 impedance relay in the RSCAD software to be simulated on RTDS [6]. The terrestrial (8-bus) power system is used to conduct the HIL test for different fault conditions [11]. The real time hardware-in-the-loop test was conducted successfully using SEL 421 impedance relay and RTDS for different types of line to ground fault on the eight-bus power system [11] [6]. The commercially available SEL 421 impedance relay [6] was interfaced with RTDS to simulate single-line to ground and double-line to ground fault for the test case power system [7].

Reference [8] presents the closed loop test conducted between the RTDS and 311C overcurrent relay for fault conditions on different parts of the radial power system designed in RSCAD. The hardware requirements and modeling issues related to closed loop testing with a relay in real time are discussed in detail [42] [43].

2.2.2 Protective Relay Modeling

Palla et al. [9] had developed the overcurrent relay model in the LabView software. The LabVIEW overcurrent relay model is simulated on the shipboard power system and terrestrial power systems in real time for different fault conditions using national instruments (NI-PXI) [21] [38]. Development of the hardware in the loop platform using NI-PXI was also presented in [9].

An instantaneous overcurrent relay model was developed in MATLAB/Simulink and simulated in real time by using dSPACE controller hardware [10] [42]. The software
relay model was tested for different contingencies in several hardware-in-the-loop platforms, including RTDS, VTBRT and NI [9] [10] [23]. The simulation results verify that the developed overcurrent relay model performed successfully with different types of software tools [43]. Saran et al [23] proposed a software model for an overcurrent relay, which comprised of analog signal sampler and breaker logic to open and reclose the breakers in RSCAD [23].

Vijapurapu et al. [11] had developed a protective relay model for the shipboard power system utilizing bus differential protection scheme. The hardware-in-the-loop testing for different fault conditions was done on the shipboard as well as on the terrestrial power system developed in RSCAD [7] using SEL 487B differential relay and RTDS [11]. The results obtained from the HIL test were utilized to develop a software model of the differential relay [11]. The software in the loop test was performed on the same test case power system under similar fault conditions to validate the bus differential protection scheme.

The modeling of the software model of impedance relay in RSCAD and real time simulation results for a test case power system were presented in reference [12] [6]. The test case power system was simulated on RTDS for different contingencies.

2.2.3 Multiple Relay Coordination

Real time protective relay coordination is a widely used technique from decades by power system utilities in order to protect the system [13, 14]. Relay coordination concept is not new but it has been modified with the advancement in the power industry [15]. Initially, the power system parameters were calculated manually to set the relays,
which in turn helped to utilize multiple relays in a system in order to protect the system from damages for certain types of faults. After the development of computer aided methods of relay coordination it became easier to predict the impact of a fault on the system and to design the proper time delay between the operations of relays present at different locations in the power system. Many methods were adopted for the relay coordination using GAMS (General Algebraic Modeling Systems) technology [16], computer aided relay coordination [17], Genetic Algorithm method of relay coordination [18] and other intelligent automatic coordination of relays technique [19,20].

Research efforts at Mississippi State University are working in direction of designing an integrated adaptive relay. A simple relay model has been developed and hardware in the loop platforms were developed to validate the developed model [6, 21, 22]. In this work, the relay model has been developed and integrated with the power system model [23]. Test cases have been developed to demonstrate coordination of two software relay models using the RTDS [32]. Final objective is to design an integrated adaptive relay incorporating all developed models in one box [44].

2.3 Protection Schemes

The power system can be protected against the fault conditions by using an appropriate protection scheme, which should be fast, reliable, efficient and economic [3]. The protective relays are positioned at different locations in the power system to act based on monitoring of the system variables (like currents and voltages) of the specific protection zone in the power system [48]. The protection system consists of current
transformer (CT), potential transformer (PT), circuit breakers and relays (e.g. differential relays, impedance relay and overcurrent relay).

2.3.1 Protective Relays

Protective relay can be defined as “a device whose function is to detect defective lines or apparatus or other power system conditions of an abnormal or dangerous nature and to initiate appropriate control circuit action [50].” The function of a specific protective relay can be thought of as either primary or backup. When a relay is applied to protect its own system element (or zone of protection) then it is referred as a primary relay; but when the relay is used as a backup for other relays when the fault is located at a remote location then those relays are referred as a backup relay [24]. Usually, a specific relay is providing both functions simultaneously; that is, it is serving as a primary relay for its own zone of protection and as a backup relay for remote zones of protection. Most commonly used relays for the protection of power systems are explained here.

Differential protection is a very reliable method of protecting transformers and buses from the internal faults [11]. Differential relays are based on the principle that when the magnitude difference between the two or multiple input currents exceed a specified limit then the relay sends a trip signal to the simulated circuit breaker in order to protect the specific zone of the power system [35]. In a differential protection scheme, currents on both sides of the equipment are measured by using current transformers (CTs). For example, consider that CT1 and CT2 are present on two opposite sides of the equipment to be protected. The current measured by the secondary of CT1 and CT2 are I_1 and I_2 [11]. Under normal conditions, $I_1 = I_2$ and no difference of current flows through
the relay. Now, if a fault occurs inside protected zone then currents I_1 and I_2 no longer remains equal and a difference of current occurs which is sent to the relay coil that allows the relay to send a trip signal to open the circuit breaker in order to protect the equipment from damaging [49].

Overcurrent relays are used for the protection of transmission lines, transformers, generators and motors [9] [23] [38]. For most large, medium-voltage systems, overcurrent protection are used only as a backup for primary protection [50] [24]. Figure 2.1 shows the basic diagram of the overcurrent protection scheme for the transmission line protection having current transformer, potential transformer and circuit breaker [25]. The operating principle of overcurrent relay can be described as when the current in the transmission line exceeds the threshold value of the current specified in the relay settings then the relay sends a trip signal to open the circuit breaker to isolate the faulted zone from the un-faulted zone [26]. The overcurrent relay is connected to a current transformer and calibrated to operate at or above a specific current level. Relay operation causes control action to open one or more contacts of the circuit breaker [24]. The overcurrent protection scheme is widely used for the protection of power system devices because of its quick operation at all voltage levels [50].

![Figure 2.1 Basic Overcurrent Protection Scheme](image)

Figure 2.1 Basic Overcurrent Protection Scheme [10]
The overcurrent relays can be classified as: instantaneous and time overcurrent relays. **Instantaneous Relays** operate without intentional time delay. They are used for faults close to the source when the fault current is very high. The operating time is approximately 10 ms. **Time Overcurrent Relays** operate with a time delay. The time delay is adjustable. For a given setting, the actual time delay depends on the current through the relay coil. In general, higher currents will cause a faster operation of the relay. The minimum current at which the relay operates (pick-up current) is also adjustable [25].

Distance or impedance relays are generally used for the protection of transmission line [46]. The distance relays are similar in operation as the overcurrent relay but have more functionality as compared to the overcurrent relay. Impedance relays are used whenever overcurrent relays do not provide adequate protection e.g.: they function even if the short circuit current is relatively low. Impedance relays monitor the impedance between the relay location and the fault. The speed of operation is independent of current magnitude.

2.3.2 Protection Scheme Selection

The major challenge is to select the best protection scheme to protect the power system. The protection scheme for a given power system can be selected by considering different system parameters like type of grounding, line impedances, number of sources and line/cable length. There are different protection schemes with their own advantages and disadvantages that can be used for the power system protection like differential, overcurrent and distance protection [48]. The distance protection scheme can not be used
in the SPS because of the short cable length. Therefore, overcurrent protection and differential relay schemes are considered as the suitable protection scheme for the shipboard power system.

The shipboard power system is small in size geographically, which makes the overcurrent protection scheme appropriate for the protection of various zones of the power system. [10]

2.4 Hardware and Software Tools

2.4.1 Real Time Digital Simulator (RTDS)

The Real Time Digital Simulator (RTDS) is a widely used tool for the design, development, and testing of small as well as large power system protection and control schemes in real time. RTDS can be used for the investigation, development, and integration of new and complex power system components [7]. It enables the user to study both the device itself and the response of the existing power system to its operation (or misoperation). Real time simulation is a commonly used tool for studying power system behavior in response to events and to analyze the system under different fault conditions. This kind of virtual test could uncover potential problems in advance and the corrective measures could then be taken before implementing the algorithm or logic in the real system [29].

The RTDS allows users to accurately develop their models in RSCAD software and simulate them efficiently in real time. RTDS employs high-speed DSP (digital signal processor) chips to compute simulations results with simulation step sizes as small as two
microseconds. RSCAD is the Graphical User Interface (GUI) software that has component libraries that enables development of the power system and different control logics to be simulated on the RTDS. Figure 2.2 shows the RTDS present at the Mississippi State University, Power and Energy Research Laboratory (PERL) [7].

![Figure 2.2 Real Time Digital Simulator (RTDS) [7]](image)

The RTDS can be applied to several areas such as [7]:

- Protection of a transmission line.
- Integrated protection & control systems.
- Control system for HVDC, SVC, synchronous machines, and FACTS devices.
- General AC and DC system operations and behavior.
- To test the proper operation of any equipment like relay, circuit breaker.

2.4.1.1 RTDS Hardware

RTDS is a complex machine and its hardware is based on Digital Signal Processor (DSP) and Reduced Instruction Set Computer (RISC), and utilizes advanced
parallel processing techniques, which provide faster computational speeds required to maintain continuous operation in real-time. One rack of RTDS consists of three types of processor cards and these are 3PC, GPC and RPC. 3PC is locally known as Triple Processor Card which includes three independent Analog Digital Signal Processors (ADSP21062) having clock speed of 40 MHz. RPC referred as RISC Processor card consists of two PowerPC 750Cxe RISC processors operating at a clock speed of 600 MHz. The Giga Processor Card is abbreviated as GPC, which combines two IBM PowerPC 750GX RISC processors each operating at 1 GHz. The RTDS simulator is available in different configurations having only 3PC or having a combination of all the 3PC, GPC and RPC cards [7].

2.4.1.2 RTDS Software (RSCAD)

The Graphical User Interface known as RSCAD is used to construct, run and analyze the simulation test cases. RSCAD allows the user to build a test case by using the different power and control system components present in the RSCAD library [7]. The following steps are required to prepare and run a new simulation case.

- Start the RSCAD/Draft software module.
- Create a new ‘Project’ and ‘Case’ directory in the ‘File Manager’ module.
- Create the new circuit diagram for simulation.
- Compile the new circuit.
- Start the simulation case from RSCAD/RunTime.

The RSCAD/Draft software module helps to create the power system model by using the libraries present in the RSCAD component libraries and then the power system
model will be simulated in real time using RTDS. Figure 2.3 shows the file manager of RSCAD. The RSCAD/Draft file menu is shown in Figure 2.4.

![RSCAD File Manager](image)

Figure 2.3 RSCAD File Manager [7]

![RSCAD/Draft File Menu](image)

Figure 2.4 RSCAD/Draft File Menu [7]

After the successful development of the power system model in draft mode, the system is compiled and simulated on the RSCAD/RunTime software module. In RunTime module, the graphs for different physical quantities like voltage, current, power, and frequency can be plotted. Switches, buttons, meters and sliders are added in the RunTime module for fault application or to observe different physical quantities. Figure 2.5 shows the RSCAD/ RunTime toolbar.

![RSCAD/RunTime toolbar](image)
Figure 2.5 RSCAD/RunTime toolbar [7]

The power system running on the RTDS will generate plots for different physical quantities in the RunTime module, which can be analyzed under normal as well as under different fault conditions.

2.4.2 SEL 351S Overcurrent Relay

The SEL (Schweitzer Engineering Laboratories) 351S is a directional overcurrent relay that generates a trip and reclose signal when the current exceeds the threshold value of current. Figure 2.6 shows the SEL 351 S overcurrent relay [23]. SEL 351 S relay is used for the protection of transmission lines, generators, motors and transformers [26]. SEL 351 has automatic as well as manual open and reclose mechanisms for line to line and line to ground faults. SEL 351S relay settings can be done through ACSELERATOR software installed on a computer using serial input/output wire. The settings of SEL relays can also be done directly from the front panel of the relay [38] [26]. The settings of the SEL 351 relay are different for different power systems.
2.4.3 GE D60 Distance Relay

GE (General Electric) D60 is a distance relay, which is used for the protection of transmission lines. Figure 2.7 shows the GE D60 relay [33]. It has automatic as well as manual open and reclose mechanisms for line to line and line to ground faults.

The GE relays can be programmed by using the UR EnerVista software installed on a computer using Ethernet port programs or the serial input/output cable [33]. The settings of the GE relay are different for different power systems.
2.4.4 LabVIEW Software

The LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a user-friendly graphical programming language software developed by National Instruments for conducting different types of real time as well as non real time simulations [45]. The programming language used in LabVIEW, also referred to as G, is a dataflow programming language [34]. LabVIEW have been used in variety of applications because it can be used in a fast pace manner easily in order to develop the complex control and measurement applications [40]. LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three components: a block diagram, a front panel, and a connector panel. The connector panel is used to represent the VI in the block diagrams of other, calling VIs. Controls and indicators are present on the front panel, which allows an operator to input data into or extract data from a running virtual instrument. However, the front panel can also serve as a programmable interface. Thus a virtual instrument can either be run as a program, with the front panel serving as a user interface, or, when dropped as a node onto the block diagram. The front panel defines the inputs and outputs for the given node through the connector panel. This implies each VI can be easily tested before being embedded as a subroutine into a larger program [34] [40] [45].

In this thesis work, LabVIEW software is used to develop the differential relay model by using the component library present in the LabVIEW libraries.

2.5 Test Case Power Systems

Shipboard power system and terrestrial power systems are used as test cases for conducting HIL and SIL tests [23] [39] [42] [43]. Terrestrial power system includes 2-bus
and 8-bus power system while shipboard power system is a 4-bus system. The test case power systems are developed in RSCAD software by using the component and power system libraries present in the RSCAD draft file [7].

2.5.1 Shipboard Power System (SPS) Characteristics

The shipboard power system, which is discussed in this thesis work, is a 4-bus system developed in RSCAD [11]. Figure 2.8 shows the shipboard power system.

The shipboard power system has the following components [28]

- Two generators of 36 MVA and 13.8 kV.
- Two generators of 4 MVA and 13.8 kV.
- Two 4.16 kV, 60Hz induction motor loads.
- Current transformers, potential transformers and circuit breakers.
- Gas turbine with governor mechanism operating at 60Hz frequency.
Figure 2.8 Shipboard Power System in RSCAD

The shipboard power system consists of two parallel cables (Cable 1 and Cable2). The shipboard system consists of four generators (namely NW, NE, SE and SW generators) of 13.8kV rating with an exciter and a gas turbine operating at 60 Hz in a ring configuration [1]. Out of the four generators two generators of 36MVA rating are considered as main generators {NW and SE generators} while the other two generators of 4 MVA rating are considered as auxiliary generators (NE and SW generators). The circuit
breakers are located at different locations in the power system. BRK1 and BRK2 are present on cable 1 as shown in the Figure 2.9. There are two types of loads present in the shipboard power system: vital and non-vital loads. The vital loads are those loads, which are to be feed with power at all the time in the ship under normal as well as severe conditions. The automatic bus transfers (ABTs) or manual bus transfers (MBTs) make the power available to the vital loads at all the time [2] [11]. There are two propulsion motors (Motor 1 and Motor 2) in the ship system, which acts as a load operating at 4.16 kV. The current and potential transformers are present for the measurement of current and voltages flowing in the three phases of the shipboard power system. The CT ratio of the current transformer 1 (CT1) is 300:1.

2.5.2 Terrestrial Power System (TPS) Characteristics

The terrestrial power systems are land based power system extended over wide area and the power is generated, transmitted and distributed through long overhead transmission lines. The hardware and software in the loop test are conducted over the terrestrial power system for two-bus and eight-bus power system.

2.5.2.1 Two-Bus Power System

The two-bus power system is a simple test system having load and source connected through a transmission line of 100 Km length. The CT ratio of the current transformer is 800:1. Two circuit breakers are present at the two ends of the long transmission line, which are operated either by a hardware relay or a software relay. Figure 2.9 shows the basic two-bus system developed in RSCAD software suite. The
fault is applied at the center of the transmission line at bus-3 by the fault inception logic developed in RSCAD software.

The specifications of the two-bus test case system are:

- AC source of 500 kV
- Load of 300 MW operating at 230 kV
- Current transformer, potential transformer and circuit breaker
- Fault inception logic

Figure 2.9 Two-Bus Power System in RSCAD

2.5.2.2 Eight-Bus Power System

The eight-bus power system has two parallel transmission lines (transmission line 1 & transmission line 2) of 100 km length connecting the source and the load. An AC source of 230 kV is used to supply a synchronous type of load having a rating of 1200 MVA operating at 15 kV. The circuit breakers are connected at different locations on the
transmission line in order to isolate the faulted zone upon the occurrence of fault. Two circuit breakers (BRK 3 and BRK 4) are present on transmission line 1 while two circuit breakers (BRK 1 and BRK 2) are present on transmission line 2 as shown in figure 2.11. The current flowing in to the BRK1 are IBRK1A, IBRK1B and IBRK1C while the currents entering in to the BRK2 are IBRK2A, IBRK2B and IBRK2C. The current transformer and potential transformers are placed to measure the currents (IBUR1A, IBUR1B and IBUR1C) and voltages (VBUR1A, VBUR1B and VBUR1C) flowing in each phase of the transmission line. The CT ratio of the current transformer 1 is 300:1. The fault inception logic is present at 50% of the transmission line 2. The fault inception logic is used to apply different types of line to ground faults like single-line-to-ground fault, double-line-to-ground fault or three phase faults on bus-8 on the transmission line 2. Figure 2.10 shows the eight-bus power system developed in RSCAD software suite.

The specifications of the 8-bus system are

- 230 kV AC source
- 230 kV/230kV(delta-star) Transformer
- Bergeron type transmission lines of 100 km length
- 1200MVA, 15kV Synchronous motor
- Current Transformers, Potential Transformers and Circuit Breakers
- Speed governor, Turbines and Exciter
2.6 Hardware-in-the-Loop (HIL) Test

In HIL simulation, some of the components of the virtual power system are replaced with physical devices [30]. HIL technology is one of the methods to understand nonlinear and dynamic behavior of the system and helps in building and validating a model for physical devices [4] [41]. In simple words, Hardware-in-the-loop test can be defined as “A test in which software model of a power system designed in RSCAD is connected with an actual physical hardware device in order to observe the system behavior or response to different fault conditions” [23]. Figure 2.11 shows the block diagram of the hardware–in-the-loop test.

Figure 2.10 Eight-Bus Power System in RSCAD [23]
In this approach, a detailed real time power system model is developed in the RSCAD software by the user on a personal computer; this model represents all the power system plant and components like source/generators, transmission lines, motors, circuit breaker, current and potential transformers and fault control logic [23] [27]. The power system model is then executed in real time using the RTDS hardware [5] [8] [39]. The SEL 351S overcurrent relay or GE D60 relay which are to be tested are uploaded with specified relay settings and then interfaced with the power system model simulated on RTDS using actuator wires. The simulated power system is then subjected to a range of fault scenarios which occurs in actual power system in order to analyze the performance of the protection relay for the given power system. Issues and challenges faced in using RTDS for HIL simulation have been discussed in [31]. Figure 2.12 shows the HIL simulation conducted on test case power system using RTDS and SEL 351S overcurrent relay [27].
Figure 2.13 shows the HIL simulation conducted on 8-bus system using GE D60 relay and RTDS. An amplifier is placed between the GE relay and RTDS. The main function of the amplifier is to amplify the small analog signals generated by the RTDS so that it can be sensed by the GE relay for its proper operation. The test cases, which were used to conduct the HIL test, were shipboard power system, eight-bus power system and two-bus power system. The simulation result for the test case power system has been given in detail in chapter V.
2.7 Software-in-the-Loop (SIL) Test

Software in the loop (SIL) test is defined as “A test in which software model of the power system designed in RSCAD is connected to a software model of the device, which performs the same operation as a physical hardware device in order to observe the system behavior under different fault conditions [23]” The SIL test is similar to the HIL test but the main difference is that the hardware device in the HIL test is replaced by the software model of the hardware device in the SIL test [27]. SIL is a test in which the software model of the hardware device is developed in the RSCAD software and tested on the power system model simulated in real time under different fault conditions to observe the performance of the software model of the device and its interaction with the power system.
A block diagram of software-in-the-loop test is shown in Figure 2.14. The SEL 351S overcurrent relay is used as a hardware device whose software model was developed by Kankanala [23] and then modified in this research work [32]. The software model of overcurrent relay should have the same functionality as that of the hardware device. The software relay model consists of two control logics: analog signal sampler and software relay logic to open and reclose the breaker. An analog signal sampler is used to sample, filter and calculate the root mean square (RMS) current, which is flowing in the transmission lines-cables [23]. The relay logic compares the RMS current with the pick-up value of the current in order to generate a trip signal to open the breaker and generates a reclose signal to close the breaker if fault is cleared. SIL simulation on the test case power system utilizing RTDS and software relay model is shown in Figure 2.15 [47].
2.8 Multiple Relay Coordination in a System

After conducting and validating the HIL and SIL test successfully, the next step is to use the hardware and software relays together to operate the circuit breakers present at different location as well as on the same transmission lines/cables in the power system. The main purpose of this work is to establish that if the fault is present at certain location in the power system then only the circuit breaker present on that faulted line/cable will be operated by the relays related to those breakers while the circuit breaker located on the un-faulted line/cable will not be operated by the relay and the loads connected to the healthy line will be fed by the power supply normally. In this way the power system is protected against the fault located anywhere in the system and the main objective of maintaining the continuity of power supply in the healthy zone of the power system will be achieved successfully. Multiple relay operation and coordination of relay tests were conducted on the shipboard and eight-bus power system utilizing hardware and software relays separately as well as together. Some of the tests conducted were:
• Test case power system utilizing multiple hardware SEL 351S relays for the operation of breakers located at different transmission line/cables in the system.

• Test case power system having software overcurrent relay models for the operation of breakers located at different transmission lines/cables in the system.

• Coordination of software model of overcurrent relays for the shipboard [32] as well as for the 8-bus system.

• Coordination of hardware SEL 351 overcurrent relays for the shipboard [47] as well as for the 8-bus system.

2.9 Summary

This chapter gives an introduction of the various protection schemes, which are utilized in the power system protection, and gives the reason why overcurrent protection scheme is adopted in this thesis work. The application and description of the RSCAD and LabVIEW software are discussed and the hardware tools like RTDS, SEL 351S overcurrent relay and GE D60 distance relay, to conduct the HIL and SIL test, were explained. Terrestrial and shipboard power system test cases are explained in detail. The importance of HIL and SIL tests were explained briefly with the help of figures. The protection scheme for the shipboard power system and terrestrial power system using multiple hardware as well as software relays were briefly discussed.
3.1 Introduction

This chapter deals with the hardware in the loop test. The procedure of interfacing the commercial hardware relay with the RTDS is explained in this chapter. The procedure to develop the hardware setup for the performance of HIL test using RTDS and SEL 351S overcurrent relay (or GE D60 distance relay) is discussed. The simulation results of the HIL test conducted on the terrestrial as well as on the shipboard power system are presented.

3.2 SEL 351S Overcurrent Relay Protection

The basic working of the SEL 351S overcurrent relay is explained in section 2.4.2 of this thesis. The SEL 351 relay is connected to the computer through serial input-output port cables to set the relay by using the ACSELARATOR software. The hardware SEL 351S overcurrent relay is shown in Figure 2.6 of chapter II of this thesis.

The SEL 351S relay has some key features like [26],

i. The SEL 351S overcurrent relay has the automatic as well as manual reclose mechanism which helps to open the breaker during the fault condition and also
closes the breaker if the fault is removed from the line in a given time as specified in the relay settings.

ii. The SEL 351S overcurrent relay can be set by using the front panel or by using the ACSELERATOR software as explained above. The pickup value of current and other parameters related to the given power system are entered into the relay settings in order to achieve fast and reliable relay operation.

iii. Detailed event report can be obtained from the SE 351S relay for its response to different fault conditions.

iv. The current and potential transformers present in the power system continuously provide data to the SEL 351S relay. The current values measured by the current transformers can be monitored from the front panel of the SEL 351S relay before and after the fault conditions.

v. The light emitting diodes present at the front panel help to display the breaker opening and reclosing signals, which in turn helps to predict the breaker operation.

vi. The SEL 351S overcurrent relays have directional elements, which enable them to operate either in forward or in reverse direction of the current flow in the transmission lines/cables.

3.2.1 Settings of the SEL 351S Overcurrent Relay

The SEL 351S relay is programmed according to the topology and specification of the test case power system as discussed in section 2.4. The communication settings are
required for the relay in order to read the settings of the relay. There are four ports (Port 1, Port2, Port 3 and Port F) in the hardware relay through which relay settings can be read. The communication settings parameters for SEL 351S relay are shown in Figure 3.1.

![Figure 3.1 Communication Settings as defined in Relay settings [26]](image)

The SEL 351S relay has six groups, which can be programmed for six different settings of the relay. Each group of relay settings can be used either for different zones of the power system or for different types of power system. Figure 3.2 shows the six groups present in the SEL 351S overcurrent relay.

![Figure 3.2 Group settings of the SEL 351S Relay](image)
There are number of parameters which are to be programmed in the relay settings in order to make it operate for a specific power system. The important parameters, which were specified in the SEL 351S overcurrent relay, were current transformer (CT) ratio and potential transformer (PT) ratio, pickup value of the current, reclosing relay settings and output signals of the relay. The current transformer ratio and potential transformer ratio specified in the 351S relay settings are shown in Figure 3.3. The CT and PT ratio are different for different power systems.

![Figure 3.3 CT and PT ratios as specified in relay settings](image1)

The pickup value of the current is specified in the relay settings as shown in the Figure 3.4. The pickup value of the current in the hardware relay is specified in the settings by the signal 50P1P phase instantaneous overcurrent pickup element. The pickup value of current is different for different test case power systems.

![Figure 3.4 Pick up Value of Current as defined in Relay Settings](image2)
The SEL 351S relay has a reclosing feature in it, which enables to close the breaker if the fault is cleared in a specific duration of time. The signal E79 in the relay settings is used to specify whether to enable or disable the reclosing relay element feature in the relay settings.

![Reclosing Relay](image1)

Figure 3.5 Reclosing relay Setting Feature in SEL 351S Relay

Three current signals of CT denoted by IBUR1A, IBUR1B and IBUR1C and the three voltage signals of PT denoted by VBUR1A, VBUR1B and VBUR1C are entering into the relay while the outputs of the relay are used to operate the circuit breaker. The output signal which are specified in the relay settings are shown in Figure 3.6.

![Output Contact Equations](image2)

Figure 3.6 Output Contact Settings in SEL 351S Relay
3.3 General Electric D60 Distance Relay Protection

The General Electric (GE) D60 is a distance relay used for high-speed transmission line protection with flexibility for three or single pole tripping. The D60 is a member of the UR (Universal Relay) family of protective relays. GE D60 relay is a numerical line distance protection system, which provides protection for medium to extra high voltage transmission lines and an integrated system providing control, automation, metering, synchrophasors, monitoring and communications in one easy to use package. The GE D60 relays are used in the applications which require fast single or three phase tripping, single or three poles re-closing, series compensated lines, with multiple breakers per terminal [33].

The GE D60 relay has some key features like [33]:

1. The GE D60 relays can be used to protect the overhead AC transmission lines of any voltage level, which includes series, compensated lines, with single and three pole tripping.

2. The GE D60 relay has automatic as well as manual reclose mechanism which helps to open the breaker during the fault condition and also closes the breaker if the fault is removed in a specified time. There are up to four shots of single/three pole automatic breaker reclosing.

3. Single GE D60 relay can support multiple breaker applications like Ring Bus, Breaker-and-a-Half etc.

4. The GE D60 relays can be programmed by using the EnerVista software to read the settings of the relay via Ethernet or through serial input output cable.
5. The GE D60 relays have a feature to obtain the detailed event report for the fault conditions.

6. There are 48 programmable LED’s on the front panel of the GE D60 relays to indicate the breaker status, type of fault and many other different system parameters.

7. The GE D60 relay has an integrated protection and phasor measurement units.

8. The GE D60 relays have directional elements, which enable them to operate either in forward or in reverse direction of the current flow in the transmission lines/cables.

The GE D60 relays are set according to the test case power system specifications. Here, the GE D 60 relay was programmed for the eight bus system in order to conduct the hardware in the loop (HIL) test successfully for different types of line to ground faults. There were different parameters which have to be specified in the GE D60 relay settings like secondary side current, secondary side voltage, pick up value of the current, transmission line impedance, length of the line, fault location, auto reclose settings, directional settings, single/triple pole tripping or reclosing, initial status of the breakers etc. After setting the parameters of the GE D60 relay, the RSCAD model of eight-bus system is simulated on the RTDS and the RTDS is interfaced with the GE D60 relay through hardware connections. The GE D60 relay receives the current and voltage signals from the simulated CT and PT in RTDS through connecting actuator cables and, sends the trip and reclose signals to the simulated circuit breaker in the power system through digital input/output port present on the front panel of RTDS.
3.4 Hardware-in-the-Loop (HIL) Setup

The hardware relays like the SEL 351S or GE D60 relays are interfaced with real time digital simulator (RTDS) by using the RTDS hardware interface block present in the RSCAD software. The power system model developed in RSCAD software is simulated in real time by using RTDS, and the current and voltages measurement of the current and potential transformers present in the power system model are continuously sent to the hardware relay. The trip and reclose signals generated by the hardware relay are sent to the simulated circuit breaker present in the power system model through the digital input-output port present at the front panel of the RTDS[7].

The current and voltages measurements of the current and potential transformers are input into the digital to analog converter (DAC) component present in the RSCAD, which in turn sends the information to the hardware relays. The currents measured by CT1 are IBUR1A, IBUR1B and IBUR1C and the voltages measured by PT1 are VBUR1A, VBUR1B and VBUR1C. Three current and three voltage signals entering in to the DDAC card of the RTDS are shown below in Figure 3.7.

Figure 3.7 DAC Components in RSCAD Library [27]
The DDAC component writes input signals to a DDAC high precision analog output board. The DDAC board is a 12 channel RTDS hardware component mounted at the back of the RTDS cubicle, which allows maximum of two hardware relays based on 6-channel relay. The 12 channels are divided into four groups. Each group contains three channels. Each channel can be scaled independently or in a group. If each channel is scaled independently then the initial output advance is set to 1.0 but if three channels are considered in a group then only one scaling value is required which in turn requires an output advance per group. The DDAC board is connected to a 3PC card, which must be assigned to a C processor. The inputs to the DDAC component are physical relay signals. The component’s software converts and scales the input signals to 16 bit and writes them to the DDAC card via the optical port. The output range of the DDAC is a $+/-10$ volt.

The DDAC continuously sends the current and voltage signals to the hardware relay. Three current and three voltage signals coming out of the RTDS are connected at the back of the SEL 351S or GE D60 relay through wires. The current entering into the hardware relay is displayed on the front panel. The protective logic present in the hardware relay generates a trip signal upon the occurrence of fault in the system. The trip and reclose signals generated by the hardware relays are sent to the simulated circuit breaker in the system via digital input-output ports present on the front panel of the RTDS through cables. The hardware in the loop setup using SEL 351S overcurrent or GE D60 relay and RTDS is shown in figures 2.12 and 2.13 in Chapter II of this thesis.

The digital input port can read the 16-bit data from the processors. 3PC processors A and B only have an access to the digital input port. The 3PC processor C does not have access to a digital input port. The digital input port component reads 16 bits and returns
an INTEGER word. When the digital input port pins are not connected to the external equipment then it reads logic ‘1’. The multiple INTEGER words are split into multiple logical signals by using word to bit conversion block. The input is INTEGER while all the output signals are logical (ie. 0 or 1 only). In the HIL test, there are six output signals generated from word to bit conversion block as shown in figure 3.8. The six output signals are TRIP1A, REC1A, TRIP1B, REC1B, TRIP1C and REC1C, which are denoted as the three-phase trip and reclose signals. The digital input port block, word to bit conversion block and the trip and reclose signals is shown in figure 3.8.

![Digital Input Port, Word to Bit conversion block in RSCAD](image)

Figure 3.8 Digital Input Port, Word to Bit conversion block in RSCAD

Three trips and three reclose signals generated by word to bit conversion blocks are sent to the S-R flip flops which is set as high. The initial state of the flip-flop (Q=0 or Q=1) is defined by the International Safe Transit Association (ISTA) parameter. Here, the initial state of S-R flip flops is set as Qinit= 0. The flip-flop operates according to the truth table as shown in table 3.1.
The output signals of the S-R flip-flops are given to the pickup and drop off timers block present in the RSCAD library. The pickup and drop off timer is set at 0.05 seconds (3 samples). The output of the pickup and drop off timer blocks are BRK10CA, BRK10CB and BRK10CC. The BRK10CA, BRK10CB and BRK10CC signals are used to open or reclose each phase of the circuit breaker. But the circuit breaker present in the power system can take only single signal to open or to reclose the breaker. The three signals, i.e. BRK10CA, BRK10CB and BRK10CC, are converted into a single signal by using the bit to word conversion block, which converts multiple logical inputs to a single word, as shown in the Figure 3.9.

![Figure 3.9 S-R Flip Flops, Timer and Bit to Word Conversion Block in RSCAD](image-url)
3.5 Fault Inception Logic

The fault control logic is built in RSCAD to simulate a fault on the transmission line / cables. The fault type used here is line to ground fault and applied on different buses depending upon the test case power system.

The fault logic consists of two parts. The first part of the fault control logic is used to control the point on the wave called as fault inception point. The fault button when pressed produces a 20-millisecond pulse, which is longer than the one cycle at 60 Hz. A pulse is produced by the AND gate and then combined with the zero crossing and fault button. The pulse drives the point on wave logic, which is comprised of a slider, a gain block, and a pulse duration timer to detect the rising edge. Figure 3.10 shows the fault control logic circuit.

Figure 3.10 Fault Inception Control Logic
The second part of the fault control logic circuit is used to control the fault type and location. Fault switches for the phase to ground fault types are combined to create the necessary integer value. This value is multiplied by the pulse from the first part of the logic, thereby creating a pulse width with an integer value that can control the fault branches.

3.6 Circuit Breaker Control Logic for HIL and SIL Test

The main task of the breaker control logic is to operate the BRK2 in a sequential manner with the BRK1. For example if a SLG fault is applied on Phase A then breaker logic will open only phase A of the breaker while the other two phases (B and C) will remain close during the SLG fault. But for double line to ground and three phase faults, the breaker logic opens all the three phases of the breaker irrespective of the type of double line to ground (A-B-G, B-C-G, C-A-G) or three-phase fault. The circuit breaker control logic developed in RSCAD software is shown in Figure 3.11.

![Circuit Breaker Control logic for HIL and SIL Test](image.png)
3.7 Hardware-in-the-Loop Test using SEL 351S Overcurrent Relay and RTDS

3.7.1 HIL test on eight-bus power system

The eight-bus power system was simulated for different types of line to ground fault present at 50% of the transmission line 2. The fault inception logic was used to put the line to ground fault on the transmission line 2.

During no fault condition, normal current and voltage enters in to the current and potential transformer having value of 646 A and 230 kV, respectively. The nominal RMS value of current coming out of the current transformer is 646A/300=2.15 A. The power system is simulated for two seconds with a time step of 60 microseconds. Figure 3.12 shows the perfectly sinusoidal instantaneous currents measured by the CT are 3.02 A. Figure 3.13 shows the BRK1 and BRK2 status at no fault condition. The yellow light in the circuit breaker status indicates that the breakers are closed. But if the light turns to be grey in color then it indicates that the breakers are open.

![Figure 3.12 CT Currents at No Fault](image)

Figure 3.12 CT Currents at No Fault
The eight-bus system is simulated for all types of line to ground faults such as single line to ground (SLG), double line to ground (L-L-G) and three phase fault (L-L-L-G). In the eight-bus system, the nominal current flowing in the line is 2.15A and in the SEL 351 relay settings it is specified that the pickup value of current during the fault is 4A. The pickup value of current programmed in the SEL settings should be generally 1.5 times or greater than the nominal current. Figure 3.14 and 3.15 shows the CT current, breaker status for SLG fault.
Figures 3.14 indicate that the burden current in phase A of CT goes to 14A when a SLG fault is present on phase A at bus 8. When SLG fault is present on bus 8 then SEL 351S opens all the three phase of the BRK1.

![Trip of BRK 1](image1)
![Trip of BRK 2](image2)

![BRK Open](image3)
![BRK 2 Open](image4)

![BRK 1 RECLOSE](image5)
![BRK 2 RECLOSE](image6)

Figure 3.15 Trip, Open and Reclose Signal for BRK1 and BRK2 after SLG Fault

Figure 3.15 shows trip, open and reclose signals for BRK1 and BRK2 during SLG fault. At fault condition, as the current exceeds the threshold current, the SEL 351 relay generates a trip signal to open the BRK1 after three cycles (one cycle=0.01667). After 65 cycles, SEL 351S relay tries to reclose the BRK1. After getting the reclose signal, BRK1 recloses in 3 cycles. If the fault is not cleared then BRK1 stays open and it goes to lockout stage. The BRK2 operation by circuit breaker control logic can be explained as
follows: at fault condition, breaker control logic generates a trip signal in phase A of the BRK2 to open it after a delay of one cycle from the trip signal generated in BRK1. Once the BRK2 is open the breaker control logic tries to close the BRK2 after a delay of 65 cycles. After getting the reclose signal, BRK2 recloses after five cycles. The same behavior was observed in the case of single line to ground faults on phases B and C, respectively.

The figures below show the CT currents, BRK1 and BRK2 status and, trip, open and reclose signals for BRK1 and BRK2 for L-L-G faults.

![Figure 3.16 CT Currents after L-L-G Fault](image1)

![Figure 3.17 BRK1 and BRK2 Status after L-L-G Fault](image2)
Figures 3.16 indicate that the burden current in phases A and B goes beyond the threshold current when L-L-G is present on phases A and B at bus 8. When L-L-G fault is present on phases A and B of the bus 8 then SEL 351S and breaker control logic opens all the three phase of the BRK1 and BRK2. Figure 3.17 shows the BRK1 and BRK2 status during the L-L-G fault.

Figure 3.18 Trip, Open and Reclose Signal for BRK1 and BRK2 after L-L-G Fault

Figure 3.18 shows trip, open and reclose signals for BRK1 and BRK2 during L-L-G fault. At fault condition, the SEL 351 overcurrent relay and circuit breaker control logic open and recloses the BRK1 and BRK2 respectively in a similar way as explained.
for the SLG fault. The same behavior was observed in the case of double line to ground faults on phases B C and phases C A, respectively.

The eight-bus system is simulated for three phase to ground fault. Figure 3.19 below shows the CT current during the three-phase fault (L-L-L-G). Figure 3.20 shows the BRK1 and BRK2 status during the L-L-L-G fault condition.

![Figure 3.19 CT Currents after L-L-L-G Fault](image1)

![Figure 3.20 BRK1 and BRK2 Status after L-L-L-G Fault](image2)

Figure 3.19 shows that during the three phase fault, the burden current in all the three phases of the CT goes way beyond the threshold limit which enables the SEL 351S and breaker control logic to open all the three phases of the BRK1 and BRK2. Figure
3.20 shows that all the three phases of the BRK1 and BRK2 are open during the L-L-L-G fault because the color of the lights turned gray.

Figure 3.21 Trip, Open and Reclose Signal for BRK1 and BRK2 after L-L-L-G Fault

Figure 3.21 shows trip, open and reclose signals for BRK1 and BRK2 during L-L-L-G fault. At L-L-L-G fault condition, the SEL 351 overcurrent relay and circuit breaker control logic open and recloses the BRK1 and BRK2, respectively in a similar way as explained for the SLG fault.
3.7.2 HIL test on shipboard power system

The shipboard power system (SPS) is a small 4-bus power system having short cables. The shipboard power system was designed in RSCAD software and the specifications of its parameter were explained in the section 2.5.1 in Chapter II. The SPS was simulated for different types of line to ground fault present at 50% of the cable 1. The fault inception logic was used to put the line to ground fault on bus 1 of cable 1.

The normal value of currents and voltages at no fault condition in the SPS are 156 A and 13.8 kV. The nominal RMS value of current coming out of the current transformer is \(156/300 = 0.52\) A. The SPS is simulated for 1.80 seconds on RTDS. Figure 3.22 shows the instantaneous CT currents of the shipboard power system without fault condition. BRK1 and BRK2 status at no fault condition is shown in Figure 3.23.

![Figure 3.22 CT Currents at No Fault](Image)

![Figure 3.23 BRK1 and BRK2 Status at No Fault](Image)
The HIL test is performed on the SPS for all types of line to ground faults such as single line to ground (SLG), double line to ground (L-L-G) and three phase fault (L-L-L-G) and the results for the three phase faults are presented here. For the SPS, the pickup value of current is specified as 1A in the SEL 351S relay settings. Figure 3.24, 3.25 and 3.26 shows the CT currents, breaker status and, BRK1 and BRK2 trip, open and reclose signals for L-L-L-G fault.

Figure 3.24 CT Currents after L-L-L-G Fault

Figure 3.25 BRK1 and BRK2 Status after L-L-L-G Fault

Figure 3.24 shows that at three phase fault, the burden current in all the three phases of the CT crosses the 30A, which is way beyond the threshold limit, and enables the SEL 351S and breaker control logic to open all the three phases of the BRK1 and
BRK2. Figure 3.25 shows that all the three phases of the BRK1 and BRK2 are open during the L-L-L-G fault.

Figure 3.26 Trip, Open and Reclose Signal for BRK1 and BRK2 after L-L-L-G Fault

Figure 3.26 shows trip and reclose signals for BRK1 and BRK2 during L-L-L-G fault. At fault condition, as the current exceeds the threshold current, the SEL 351 relay generates a trip signal to open the BRK1 after three cycles (one cycle=0.01667. BRK1 and BRK2 operate as expected similar to 8-bus power system test case.
3.7.3 **HIL test on two-bus power system**

The fault inception logic was used to put the line to ground fault on bus 3 of the transmission line 1 at 50% length of line.

The CT ratio of the current transformer is 300:1. At no fault condition normal currents in the line is 165A. The nominal RMS current coming out of the current transformer is 165/300= 0.55 A. The simulation time for the two-bus system on RTDS is 1.80 seconds with a time step of 60 microseconds. Figure 3.27 shows the no fault CT current. Figure 3.28 shows the BRK1 status during the no fault condition.

![Figure 3.27](image1)

Figure 3.27 CT Currents at No Fault

![Figure 3.28](image2)

Figure 3.28 BRK1 Status at No Fault
The two-bus is simulated for line to ground faults and the result for the three phases to ground fault is explained here. In the two-bus system, the nominal current flowing in the line is 0.55A and the pickup value of current is specified as 2A in the SEL 351S relay settings. Figure 3.29, 3.30 and 3.31 shows the CT currents, breaker status and, BRK1 trip, open and reclose signals for L-L-L-G fault.

Figure 3.29 CT Currents after L-L-L-G Fault

Figure 3.30 BRK1 Status after L-L-L-G Fault

Figure 3.29 shows that during the three phase fault, the burden current in all the three phases of the CT is above or around 20A which is way beyond the pickup value of current that causes SEL 351S relay to send the trip signal to open all the three phases of the BRK1. Figure 3.30 shows that the status of all the three phases of the BRK1 is open
during the L-L-L-G fault. Figure 3.31 shows trip and reclose signals for BRK1 during L-L-L-G fault.

Figure 3.31 Trip, Open and Reclose Signal for BRK1 after L-L-L-G Fault

3.8 Hardware-in-the-Loop Test using GE D60 Distance Relay and RTDS

3.8.1 HIL test on eight-bus power system

The eight-bus power system was simulated for different types of line to ground fault present at 10% of the transmission line 2 on bus 8 for HIL simulation with GE D60 relay. The fault inception logic was used to put the line to ground fault on the transmission line 2. The eight-bus power system model developed in RSCAD software is shown in Figure 3.32.
The power system is simulated for 1.5 seconds with a time step of 60 microseconds. The CT ratio of the current transformer is 300:1. Figure 3.33 and 3.34 show the current flowing in the CT and voltage at bus-8, respectively. At no fault condition, perfectly sinusoidal current and voltage flows in the system.
The HIL simulation was done for all types of line to ground faults and the result for the three phase fault is presented here. In the eight-bus system, the magnitude of the nominal current in the line and nominal voltage at bus 8 are 5.52A and 186kV respectively. In the GE D60 relay settings it is specified that the pickup value of current during the fault condition is 10A and impedance reach is set at 20 ohms.
Figures 3.35 and 3.36 indicate that during the L-L-L-G fault the burden current in all the three phases of CT goes to 50A and voltage at bus-8 drops down to zero, which enables GE D60 relay to open all the three phase of the BRK1. Figure 3.37 shows trip, open and reclose signals for BRK1 during L-L-L-G fault. At fault condition, as the voltage/current ratio exceeds the threshold value, the GE D60 relay generates a trip signal to open all the three phases of BRK1 after the delay of three cycles (one cycle=0.01667). After 13 cycles, GE D60 relay tries to reclose the BRK1. After getting the reclose signal
from the relay, BRK1 recloses after three cycles of delay. But if the fault is not cleared then BRK1 stays open and it goes to lockout stage. Table 3.2 shows the relay tripping and BRK1 opening and reclosing time for the HIL test for the eight-bus power system.

Figure 3.37 Trip, Open and Reclose Signal for BRK1 after L-L-L-G Fault

Table 3.2 Tripping, Open and Reclose Time for BRK1 during HIL

<table>
<thead>
<tr>
<th>Eight-bus Power System</th>
<th>Hardware In the Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRK1 (In Seconds)</td>
<td></td>
</tr>
<tr>
<td>FAULT (L-L-L-G)</td>
<td>0.3124</td>
</tr>
<tr>
<td>TRIP</td>
<td>0.3291</td>
</tr>
<tr>
<td>Breaker Opening</td>
<td>0.3815</td>
</tr>
<tr>
<td>Reclose Signal</td>
<td>0.6040</td>
</tr>
<tr>
<td>Breaker Reclosing</td>
<td>0.6525</td>
</tr>
</tbody>
</table>
3.9 Summary

The concept of overcurrent protection scheme and the procedure to set the SEL 351S overcurrent was explained. A brief idea about the parameters, which have to be set in the GE D60 relay settings, was also explained. The step-by-step procedure to develop the hardware interface setup to perform the HIL test is also discussed. The simulation results were presented for the HIL test conducted on the eight-bus, shipboard (4-bus) and two-bus system for different types of line to ground faults using RTDS and hardware SEL 351S overcurrent relay. The real time HIL test was also conducted on the GE D60 distance relay on the eight-bus system for all type of line to ground fault and the result for the three-phase fault were presented.
CHAPTER IV
SOFTWARE RELAY MODEL DEVELOPMENT

4.1 Introduction

This chapter deals with the development of protective relay models. The software overcurrent relay model is developed in RSCAD software and designed by analyzing the HIL simulation results. The developed overcurrent relay model is tested on the terrestrial as well as for the shipboard system under different fault scenarios in software in the loop (SIL) test. The HIL and SIL results are compared to validate the software overcurrent relay model. The software relay model should mimic the basic functionality of the commercially available hardware overcurrent relay. The procedure to develop the differential relay model in LabVIEW for different fault conditions is also presented in detail in section 4.5.

4.2 Software Model of Overcurrent Relay in RSCAD

In the software in the loop (SIL) test the hardware device used in the hardware in the loop (HIL) test setup is replaced by a software model of the device and is tested under different fault conditions. Here in this thesis work, SEL 351S overcurrent relay is
replaced by a software model of overcurrent relay developed in RSCAD software and is tested for test case power systems simulated in real time for different types of faults. The software relay model is designed on the basis of overcurrent protection scheme. The main components of software model of overcurrent relay like analog signal sampler and breaker control logic are discussed below in detail.

4.2.1 Analog Signal Sampler

The analog signal sampler is used to sample, filter and calculate the root mean square (RMS) value of the currents, which are flowing in the three phases of the transmission lines/cables. The digital relays require that an analog signal is sampled at a rate equivalent to the time period from the instant the fault is detected to the instant the fault is cleared in the system (protection cycle time). In the analog signal sampler logic, the analog signal is sampled at a rate of 5.76 kHz or 96 samples per cycle for a 60Hz base. Then the signal is down sampled at a rate of 0.480 kHz or 8 times per cycle as the protection cycle is set to 8 times per cycle. The root mean square value will be calculated using the two-sampling technique and the equation (1) calculates the magnitude of input signal using this technique [7].

\[
I^2 = \frac{I_k^2 + I_{k+1}^2 - 2I_k I_{k+1} \cos \omega_0 \Delta t}{\sin \omega_0 \Delta t^2}
\]

(1)

In the analog signal sampler, the input signals are up sampled and down sampled. The process of increasing the sampling rate of the signal is called up sampling while the process of decreasing the sampling rate of the signals is called down sampling. The input signal is first up sampled at 5.76 kHz and then down sampled at 0.480 kHz. Equation 1
introduces the two-sample technique for determining the magnitude of a signal from sampled data taken at discrete intervals. In this model, sampling is done at a constant rate. Therefore the numerator and denominator containing the terms \(\cos, \sin, \Delta t \) and \(w \) can be computed. A single state buffer is used to get the present and previous sampled data. The sampled data is squared and summed together completing the first part of the numerator in the equation 1. The RMS current for phase ‘A’ is calculated from the phase ‘A’ burden current flowing through the current transformer (CT) by using the analog signal sampler as shown in Figure 4.1. Similarly the RMS current for phase ‘B’ and ‘C’ can also be calculated by using the same analog signal sampler logic.

![Figure 4.1 Analog Signal Sampler](image)

4.2.2 Relay Logic to Open and Reclose the Breaker

For SIL test, the simulated circuit breaker is controlled by software model of SEL 351 relay logic formed in RSCAD. To simulate the opening and closing of the breakers depending on analog signal sampler output, relay logic was developed as shown in Figure 4.2. When the measured/calculated RMS current calculated by analog signal sampler is
greater than the specified pick up value, then the IF THEN ELSE block output will be 1. The type of fault is checked by the second IF THEN ELSE block, if the fault applied is phase to ground then the output will be 1. These two outputs forms an input to the AND gate. A trip signal to the BRK1 is sent out if the output of the AND gate is high.

Figure 4.2 Relay Logic to Open and Reclose the Breaker [23]
4.2.3 Circuit Breaker Control Logic for SIL Test

The circuit breaker control logic was built in RSCAD and is shown in Figure 3.11 of Chapter III of this thesis. In SIL test, the circuit breaker 1 (BRK1) is operated by software overcurrent relay. The main task of the breaker control logic is to operate the BRK2 in a sequential manner with the BRK1 as presented in section 3.6 of Chapter III of this thesis.

4.2.4 Basic Operation of SIL test

At fault condition, the IRMS value is calculated and compared with the pickup value of current in the relay control logic. If the IRMS calculated value is greater than the pickup value then the relay control logic sends a trip signal to the BRK1. If the fault is cleared then a reclose signal is generated by relay control logic in BRK1 to close it after a delay of 65 cycles. The BRK2 operates in a sequential manner with BRK1 with a delay of one or two cycles and is operated by circuit breaker control logic.

4.3 Software-in-the-Loop Test using RTDS

This section gives the results of the software-in-the-loop test conducted on the eight-bus, shipboard and two-bus power system test cases using RTDS.

4.3.1 SIL test on eight-bus power system

The SIL test was conducted on the eight-bus power system model developed in RSCAD software as shown in Figure 2.10 of Chapter II of this thesis. The fault inception logic is used to apply line to ground fault on the bus-8 on the transmission line 2 of the
eight-bus system. This section gives the SIL simulation results for the single line to ground (SLG), double line to ground (L-L-G) and three-phase (L-L-L-G) fault simulated on the eight-bus system.

On RTDS, the eight-bus power system was simulated for 1.8 seconds. Figures 4.3 and 4.4 show the CT currents, trip signal, and BRK1 and BRK2 open and reclose signals for SLG fault applied on phase A of bus 8 of the eight bus power system.

Figure 4.3 CT current after SLG fault on phase A
The burden currents flowing through the CT1 are used to measure the RMS current by analog signal sampler and are compared with the pickup value of current in the software relay model 1. The pick up value of current is specified as 4A in the software overcurrent relay model 1 for the eight-bus system. Figure 4.4 shows that when the SLG fault is present then the software overcurrent relay model generates a trip signal to open the phase A of the BRK1 because the IRMS current goes beyond the pickup value of the current as specified in the software relay model. After the fault clearance the software relay model generates a reclose signal after 65 cycles from the BRK1 tripping to reclose the BRK1. The operation of BRK2 is controlled by the circuit breaker control logic as explained in section 3.5 of Chapter III of this thesis.

Figures 4.5 and 4.6 show the CT currents and trip, open and reclose signals for BRK1 and BRK2 for the SIL test after double line to ground fault. Figure 4.5 show that
the currents in the CT have peak current of 10A and 20 A in A and B phases, respectively after the L-L-G fault on phases A and B.

Figure 4.5 CT current after L-L-G fault on phase A and B

Figure 4.6 Trip, Open and Reclose Signal for BRK1 and BRK2 after L-L-G Fault
Figure 4.6 shows how the software relay model and breaker control logic generates the trip, open and reclose signals for A and B phases for BRK1 and BRK2, respectively after the L-L-G fault. Simulation was done for all possible double line to ground fault but not presented in thesis. This simulation results shows satisfactory response similar to results obtained for phase A and B fault.

The figures below show the CT currents and, trip, open and reclose signals for BRK1 and BRK2 for the SIL test when a three phase (L-L-L-G) fault is applied at the bus 8 of the eight-bus power system test case. Figure 4.7 shows CT1 currents having magnitude of around 20A in all phases after L-L-L-G fault.

![CT current after L-L-L-G fault on phase A B C](image)

Figure 4.7 CT current after L-L-L-G fault on phase A B C
Figure 4.8 shows that all the three phases of the BRK1 open and reclose after the L-L-L-G fault by the software relay logic while the circuit breaker control logic operates the BRK2 opening and reclosing in sequential manner with BRK1 with a delay of one cycle.

4.3.2 SIL test on shipboard power system

This section gives the SIL simulation results for the three phases (L-L-L-G) fault simulated on the shipboard power system.

The simulation time for the shipboard power system on RTDS is 1.8 seconds with time step of 60 microseconds. Figure 4.9 shows the three phase burden current in CT.
Figure 4.10 shows the trip, open and recloses signals for the BRK1 and BRK2 for L-L-L-G fault applied on three phases of bus 1 of the shipboard power system.

Figure 4.9 CT current after L-L-L-G fault on phase A B C

Figure 4.10 Trip, Open and Reclose Signal for BRK1 and BRK2 after L-L-L-G Fault
The pick up value of current is specified as 1A in the software overcurrent relay model 1 for the shipboard power system. Figure 4.10 shows that when the L-L-L-G fault is present then the IRMS current goes beyond the pickup value of current, which enables the software overcurrent relay model to generate a trip signal to open BRK1. After the fault clearance the software relay model generates a reclose signal after 65 cycles from the BRK1 tripping to close the BRK1. The BRK2 is operated by circuit breaker control logic as explained in section 3.5 of Chapter III of this thesis.

4.3.3 SIL test on two-bus power system

The SIL test was conducted on the two-bus system for all type of line to ground faults. The fault is present at bus 3 on the transmission line 1 of the two-bus system. This section gives the real time SIL simulation results for the three-phase (L-L-L-G) fault simulated on the two-bus system.

The two-bus power system was simulated on RTDS for 1.8 seconds. Figures 4.11 and 4.12 show the CT currents, trip signal and, BRK1 open and reclose signals for L-L-L-G fault applied on phases A, B and C of bus 3 of the two bus power system.

Figure 4.11 CT current after L-L-L-G fault on phase A B C
Figure 4.12 Trip, Open and Reclose Signals for BRK1 after L-L-L-G Fault

The pick up value of current is specified as 2A in the software overcurrent relay model 1 for the two-bus power system. Figure 4.12 shows that when the L-L-L-G fault is present then the software overcurrent relay model generates a trip signal to open all the three phases of the BRK1.

4.4 Comparison of HIL and SIL Results

In this section, the simulation results of the hardware in the loop and software in the loop test conducted on different test case power system are compared on the basis of functionality criteria and value of ΔT (time difference between the operation of breakers by relay). The relay tripping time and breaker open and reclose time are used as reference to validate the software overcurrent relay model.

According to functionality criterion, upon the occurrence of fault the hardware or software relay should generate a trip signal after a delay of 1 to 2 cycles (1 cycle = 16.667
milliseconds) to open the breaker after a delay of 2 to 5 cycles. After the delay of 65 to 70 cycles from the breaker opening, the relay should generate a reclose signal to close the breaker contacts. After getting the reclose signal, the breaker contact should close after a delay of 2 to 5 cycles. The hardware and software relays are compared based on this functionality criterion.

Table 4.1 below shows the relay tripping and breakers (BRK1 and BRK2) opening and reclosing time for the HIL and SIL test for the eight-bus power system. Here, ΔT1H and ΔT2S are the time difference between the operations of breakers by the hardware and software overcurrent relay model during HIL and SIL test while ΔTHS is the time difference between the operation of hardware and software relay minus the offset time during HIL and SIL test respectively. Offset time is defined as the time difference between the fault occurrence during the HIL and SIL test. Keeping the functionality criterion in mind, the ΔT1H and ΔT2S for the HIL and SIL test are compared. The ΔTHS also shows that the software relay model is operating in a similar way as that of the hardware relay irrespective of the time of fault inception. The comparison shows that the software overcurrent relay model is showing the same basic functionality as that of the actual SEL 351S overcurrent hardware relay.

<table>
<thead>
<tr>
<th>Eight Bus System</th>
<th>Hardware In the Loop</th>
<th>Software In the Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BRK 1 (Seconds)</td>
<td>BRK 2 (Seconds)</td>
</tr>
<tr>
<td>FAULT (L-L-L-G)</td>
<td>0.3735</td>
<td>0.3815</td>
</tr>
<tr>
<td>Trip</td>
<td>0.3902</td>
<td>0.4106</td>
</tr>
<tr>
<td>Breaker Opening</td>
<td>0.4488</td>
<td>0.4608</td>
</tr>
<tr>
<td>Reclose Signal</td>
<td>1.5702</td>
<td>1.5907</td>
</tr>
<tr>
<td>Breaker Reclose</td>
<td>1.6199</td>
<td>1.6434</td>
</tr>
</tbody>
</table>
Table 4.1 (continued)

<table>
<thead>
<tr>
<th></th>
<th>∆T1H (Seconds)</th>
<th>∆T2S (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip 1 - Fault 1</td>
<td>0.0167</td>
<td>0.0167</td>
</tr>
<tr>
<td>Breaker 1 Opening - Trip 1</td>
<td>0.0586</td>
<td>Breaker 1 Opening - Trip 1</td>
</tr>
<tr>
<td>Reclose Signal - Breaker 1 Opening</td>
<td>1.1214</td>
<td>Reclose Signal - Breaker 1 Opening</td>
</tr>
<tr>
<td>Breaker 1 Reclose - Reclose Signal</td>
<td>0.0497</td>
<td>Breaker 1 Reclose - Reclose Signal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Offset (Fault1H – Fault1S)</th>
<th>∆THS (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip1 H-Trip1S –(Offset)</td>
<td>0.3902-0.3982 - (0.008)</td>
<td>0.000</td>
</tr>
<tr>
<td>Breaker 1 Opening H-Breaker 1 Opening S – (Offset)</td>
<td>0.4488-0.4571 - (0.008)</td>
<td>0.000</td>
</tr>
<tr>
<td>Reclose Signal H – Reclose Signal S – (Offset)</td>
<td>1.5702-1.5835 – (0.008)</td>
<td>-0.0053</td>
</tr>
<tr>
<td>Breaker 1 Reclose - Breaker 1 Reclose S – (Offset)</td>
<td>1.6259-1.6313 – (0.008)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

The relay tripping and breakers (BRK1 and BRK2) opening and reclosing time for the HIL and SIL tests for the shipboard power system are compared on the basis of ∆T1H and ∆T2S in Table 4.2. From the table it can be observed that the values of ∆T1H and ∆T2S during the HIL and SIL test are very similar and the time difference between the operation of hardware and software relay minus offset time (∆THS) during the HIL and SIL test is very small, which concludes that the software overcurrent relay model is operating in a similar way as actual hardware SEL 351S overcurrent relay operates.

Table 4.2 Tripping, Open and Reclose Time for BRK1 & BRK2 during HIL & SIL

<table>
<thead>
<tr>
<th>Shipboard System</th>
<th>Hardware In the Loop</th>
<th>Software In the Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BRK 1 (Seconds)</td>
<td>BRK 2 (Seconds)</td>
</tr>
<tr>
<td>FAULT (L-L-L-G)</td>
<td>0.3538</td>
<td>0.3833</td>
</tr>
<tr>
<td>Trip</td>
<td>0.3708</td>
<td>0.3875</td>
</tr>
</tbody>
</table>

79
Table 4.2 (continued)

<table>
<thead>
<tr>
<th></th>
<th>Breaker Opening</th>
<th>Reclose Signal</th>
<th>Breaker Reclose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4228</td>
<td>1.5336</td>
<td>1.5826</td>
</tr>
<tr>
<td></td>
<td>0.4415</td>
<td>1.5679</td>
<td>1.6188</td>
</tr>
<tr>
<td></td>
<td>0.4513</td>
<td>1.5673</td>
<td>1.6183</td>
</tr>
<tr>
<td></td>
<td>0.4676</td>
<td>1.5906</td>
<td>1.6409</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ΔT_{1H} (Seconds)</th>
<th>ΔT_{2S} (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip 1 - Fault 1</td>
<td>0.0170</td>
<td>0.0167</td>
</tr>
<tr>
<td>Breaker 1 Opening -</td>
<td>0.0520</td>
<td>0.0513</td>
</tr>
<tr>
<td>Trip 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reclose Signal -</td>
<td>1.1108</td>
<td>1.1160</td>
</tr>
<tr>
<td>Breaker 1 Opening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reclose Signal</td>
<td>0.0490</td>
<td>0.0510</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset [Fault1H –</td>
<td></td>
<td>-0.0295</td>
</tr>
<tr>
<td>Fault1S]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔT_{HS} (Seconds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip1 H-Trip1S –(Offset)</td>
<td>0.3708 - 0.4000 – (-0.0295)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Breaker 1 Opening H-Breaker 1 Opening</td>
<td>0.4228 - 0.4513 – (-0.0295)</td>
<td>0.0030</td>
</tr>
<tr>
<td>S – (Offset)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reclose Signal H – Reclose Signal S–</td>
<td>1.5336 - 1.5673 – (-0.0295)</td>
<td>-0.0042</td>
</tr>
<tr>
<td>(Offset)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breaker 1 Reclose -</td>
<td>1.5826 - 1.6183 – (-0.0295)</td>
<td>-0.0062</td>
</tr>
<tr>
<td>Breaker 1 Opening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S – (Offset)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Similarly, the simulation results of HIL test conducted on two-bus system are compared with SIL test as shown in the Table 4.3. Simulation results and the comparison of ΔT_{1H} and ΔT_{2S} indicate that the software overcurrent relay model is replicating the same functionality as that of the hardware SEL 351S overcurrent relay.

Table 4.3 Tripping, Open and Reclose Time for BRK1 during HIL and SIL

<table>
<thead>
<tr>
<th>Two Bus System</th>
<th>Hardware In the Loop</th>
<th>Software In the Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BRK 1 (Seconds)</td>
<td>BRK 1 (Seconds)</td>
</tr>
<tr>
<td>FAULT (L-L-L-G)</td>
<td>0.35621</td>
<td>0.3849</td>
</tr>
<tr>
<td>Trip</td>
<td>0.3728</td>
<td>0.4018</td>
</tr>
<tr>
<td>Breaker Opening</td>
<td>0.4248</td>
<td>0.4521</td>
</tr>
<tr>
<td>Reclose Signal</td>
<td>1.5286</td>
<td>1.5561</td>
</tr>
<tr>
<td>Breaker Reclose</td>
<td>1.5806</td>
<td>1.6086</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΔT_{1H} (Seconds)</th>
<th>ΔT_{2S} (Seconds)</th>
</tr>
</thead>
</table>

80
Table 4.3 (continued)

<table>
<thead>
<tr>
<th></th>
<th>Trip 1 - Fault 1</th>
<th>Trip 1 - Fault 1</th>
<th>0.0169</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaker 1 Opening - Trip 1</td>
<td>0.0520</td>
<td>Breaker 1 Opening - Trip 1</td>
<td>0.0503</td>
</tr>
<tr>
<td>Reclose Signal - Breaker 1 Opening</td>
<td>1.1008</td>
<td>Reclose Signal - Breaker 1 Opening</td>
<td>1.1004</td>
</tr>
<tr>
<td>Breaker 1 Reclose - Reclose Signal</td>
<td>0.0520</td>
<td>Breaker 1 Reclose - Reclose Signal</td>
<td>0.0525</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offset</th>
<th>Fault1H – Fault1S</th>
<th>0.3562 -0.3849</th>
<th>-0.0287</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔTHS (Seconds)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip1 H-Trip1S –(Offset)</td>
<td>0.3728 - 0.4018 – (-0.0287)</td>
<td>-0.0003</td>
<td></td>
</tr>
<tr>
<td>Breaker 1 Opening H-Breaker 1 Opening S – (Offset)</td>
<td>0.4248 - 0.4521 – (-0.0287)</td>
<td>0.0014</td>
<td></td>
</tr>
<tr>
<td>Reclose Signal H – Reclose Signal S–(Offset)</td>
<td>1.5286 - 1.5561 – (-0.0287)</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>Breaker 1 Reclose - Breaker 1 Reclose S –(Offset)</td>
<td>1.5806 - 1.6086 – (-0.0287)</td>
<td>0.0007</td>
<td></td>
</tr>
</tbody>
</table>

The comparison of the HIL and SIL simulation results validates the basic functionality of software model of the SEL 351S relay developed in the RSCAD.

4.5 LabVIEW Differential Relay Modeling

The procedure to develop the differential relay model in LabVIEW is explained in this section. The basic operating principle of differential relay can be defined as that when the difference of current (\(I_d = |i_1 - i_2|\)), which are flowing in two opposite direction in the transmission line, exceeds a certain specified limit then the relay generates a trip signal to open the breaker in order to protect the equipment or bus. Figure 4.13 shows the basic differential relay circuit [11] [35].

81
If I_d is less than the threshold value, the differential relay does not generate the trip signal to open the breaker. However, if I_d is greater than the threshold value, the differential relay sends the trip signal to open the breaker. Figure 4.14 shows the block diagram of the differential relay model.

Figure 4.14 Block diagram of the components of differential relay

4.5.1 Analog and Digital Filter

The analog signals are filtered by using analog filters to remove the noises from the signal before converting them into the digital signals. The analog filter is a 5th order band pass Butterworth filter with a band pass frequency ranging from 40 to 80 Hz.
Similarly the digital signals are filtered by using digital filters to make the digital signal free from any kind of noises or disturbances. The low pass digital FIR filter is used as a digital filter in the LabVIEW differential relay model [37].

4.5.2 Analog to Digital Converter

The analog to digital converter (ADC) is an important block in the LabVIEW relay model, which is used to convert the three phase analog signals in to three phase digital signals. A zero order hold and sampling block combine to form an ADC [36] that samples the signal at the rate of 16 samples per cycle [9].

4.5.3 Comparator and Threshold Value

The digital signals coming out of the digital filter are compared with the threshold value in the comparator. If the output digital signals is above the threshold value then only the LabVIEW differential relay model generates the trip signal otherwise no trip signal is generated [9]. The threshold range of value, which is specified in the LabVIEW differential relay model, is from –0.5A to 0.5A. It means that if at fault condition, the difference between the CT1 and CT2 currents (I=i1-i2) is less then –0.5A or greater then 0.5A then only the relay model generates the digital trip signals to open the system.

4.6 Internal Mode of LabVIEW Differential Relay Model

In internal mode, the LabVIEW differential relay model can be tested for different types fault condition. The current signals, which are to be monitored, are generated by three single-phase internal supply sources, which are displaced by 120-degree phase
angle. The value of the current, which is generated by the source, is 3000A. The CT ratio of the current transformer 1 and 2 (CT1 and CT2) is 1500:1. The current coming out from the secondary side of the CT1 and CT2 is 3000/1500 = 2A. Current was sampled, filtered using the analog and digital filter and then processed using the signal processing block to get the magnitude of current. Figure 4.15 shows front panel of the differential relay model developed in LabVIEW software operating in internal mode. The LabVIEW differential relay model was tested for single line to ground fault condition. Figure 4.15 also shows that there are three buttons (Phase A fault, Phase B fault and Phase C fault) present on the front panel of the LabVIEW in order to apply different kinds of faults. The simulation results of the LabVIEW differential relay model operating in internal mode are presented in the next section of this thesis.

Figure 4.15 LabVIEW Differential Relay in Internal Model
4.7 Results for LabVIEW Differential Relay Model Operating in Internal Mode

This section presents the simulation results of the LabVIEW differential relay model operating in internal mode for single line to ground (L-G) fault inside as well as outside its zone of protection.

4.7.1 Single Line to Ground (L-G) Fault (Inside the protection zone)

In the internal mode of operation, the internal source generates the current signals and these current signals are fed to the CT1 and CT2, respectively. The current signals measured by the CT1 and CT2 are fed to the differential relay model. The differential relay model is then tested for single line to ground fault present inside the protection zone of the relay. Figure 4.16 shows the power system model with the fault present on the bus, which lies inside the protection zone of the differential relay. So in this case the differential relay will generate a trip signal to open the breaker to protect the bus.

![Figure 4.16 Power system model with fault on the bus](image)

In the LabVIEW differential relay model, the single line to ground fault is applied on phase A at 0.1 sec by pressing the button present on the front panel of the relay model.
Figure 4.17 shows the behavior of the current signals and the corresponding trip signal upon occurrence of phase A fault.

![Figure 4.17 L-G fault on Phase A (Inside the protection zone)](image)

4.7.2 Single Line to Ground (L-G) Fault (Outside the protection zone)

The relay model operating in internal mode is also tested for single line to ground fault applied outside the protection zone of the relay. In this case the differential relay will not generate the trip signal to open the breaker. Figure 4.18 shows the power system model with the fault present on the transmission line, which lies outside the protection zone of the differential relay. So the differential relay will not generate the trip signal to open the breaker.
In the LabVIEW differential relay model, the fault is applied at 0.1 sec on phase A. Figure 4.19 shows the behavior of incoming and outgoing currents from the CT1 and CT2. The figure shows that upon the occurrence of the fault, the currents in CT1 and CT2 are increased by the same factor resulting in no difference in the current 1 and current 2 and hence the relay model will not generate the trip signal.

Figure 4.19 L-G fault on Phase A (Outside the protection zone)
4.8 Summary

The procedure to develop the software overcurrent relay model was discussed in this chapter. Different control logics like analog signal sampler and relay logic were required for the development of software model of overcurrent relay in RSCAD software. The software relay model was tested on the two-bus, SPS and eight-bus power system under different fault conditions in software in the loop (SIL). The HIL and SIL simulation results were compared to validate the software overcurrent relay model. This chapter also explains the basic principle for the development of differential relay model in LabVIEW and the simulation results for the LabVIEW differential relay model.
CHAPTER V
MULTIPLE RELAY OPERATION AND RELAY COORDINATION

5.1 Introduction

This chapter presents a detailed procedure to conduct closed loop coordination testing of multiple number of hardware as well as multiple software relays using a real time digital simulator (RTDS). This chapter mainly focuses on the overcurrent protection scheme in order to protect the SPS and eight-bus power system after a severe disturbance.

5.2 Procedure to connect two Hardware Relays to the RTDS

The procedure to connect single relay to the RTDS was explained in Chapter III of this thesis. The DDAC board, present in the RSCAD library consists of 12 channels hardware RTDS component mounted at the back of RTDS cubicle. First six channels (1-6) are used to connect the first hardware SEL 351S relay while the other 6 ports (7-12) are used to connect the second hardware SEL 351S relay. The current and voltages measured by CT1 (IBURA, IBURB, IBURC) and PT1 (VBURA, VBURB, VBURC) are given to the first SEL 351S relay while currents and voltages measured by the CT3 (IBUR3A, IBUR3B, IBUR3C) and PT3 (VBUR3A, VBUR3B, VBUR3C) are given to
the second SEL 351S relay through actuator wires. Figure 5.1 shows the six current and six voltage input signals entering into the DDAC card of the RTDS.

![Diagram of DAC Components in RSCAD Library](image)

Figure 5.1 DAC Components in RSCAD Library

The DDAC continuously sends the current and voltage signals to the hardware relays. Three currents and three voltages coming out of the RTDS are connected at the back of each of the SEL 351S relays through wires. The current entering into the hardware relays is displayed on the front panel. The protective logic present in the hardware relay generates a trip signal upon the occurrence of a fault in the system. The trip and reclose signals generated by the two hardware relays are sent to the simulated circuit breaker (BRK1 and BRK3) in the system via digital input-output ports present on the front panel of the RTDS through cables. The trip and reclose signals generated by the relay are given to the specified breakers (BRK1 and BRK3) by using a logic as shown in Figure 5.2. The basic operation of sending the trip and reclose signals generated by the hardware SEL 351S relays to the simulated breaker is explained in detail in Chapter IV of
this thesis. The first SEL 351S relay will generate a trip and reclose signals for BRK1 only when FAULT1 is present in the system while second SEL 351S relay generate a trip and reclose signals for BRK3 only when FAULT 2 is present in the system.

Figure 5.2 Breaker Logic to Control BRK1 and BRK3

After connecting the relays to the RTDS, the test for multiple operations of hardware relays on the test case power system was conducted and the simulation results are discussed in the next sections.
5.3 Simulation Results with Multiple Hardware Relays in the System

5.3.1 Eight-Bus Power system

The eight-bus system shown in Figure 2.10 of Chapter II of this thesis is modified in order to conduct the test having multiple hardware SEL 351S overcurrent relays located on two different transmission lines. The modified eight-bus system is shown in Figure 5.1 where another transmission line 1 was developed similar to the transmission line 2. The specifications of the eight-bus system were described in Chapter II of this thesis. The line to ground fault is applied on bus-9 and bus-8 on the transmission line 1 and transmission line 2 respectively at 50% of the transmission line length by using the fault inception logic as explained in section 3.5 of Chapter III of this thesis work.
As shown in the above figure that there are four circuit breakers in the system, namely BRK1, BRK2, BRK3, and BRK4. Here, BRK1 and BRK2 are located on transmission line 2 while BRK3 and BRK4 are located on transmission line 1. In this work, two hardware SEL 351S relays were used to operate the BRK1 and BRK3. The current transformer 1 (CT1) and potential transformer 1 (PT1) are located on transmission line 2 across BRK1 while current transformer 3 (CT3) and potential transformer 3 (PT3) are located on transmission line 1 across the BRK3. The current and voltages measured by CT1 and PT1 are fed to the first SEL 351S overcurrent relay in order to control the BRK1 operation, which is located on the transmission line 2 while the
current and voltages measured by CT3 and PT3 are sent to the second SEL 351S relay to operate the BRK3 located on the transmission line 1. The BRK2 and BRK4 are operated in accordance with BRK 1 and BRK 3 by the circuit breaker control logic developed in RSCAD as explained in section 3.6 of Chapter III of this thesis.

The eight–bus power system is simulated for 1.7 seconds with a time step of 95 microseconds on the RTDS. The CT ratio of the current transformer 1 and current transformer 3 is 300:1. The nominal RMS value of current coming out of the CT1 and CT3 is 646A/300=2.15 A. During no fault condition, the perfectly sinusoidal current and voltages are coming out of the current and potential transformers located at transmission line 1 and transmission line 2. Figure 5.4 shows the instantaneous currents measured by CT1 (IBURA, IBURB, IBURC) and CT3 (IBUR3A, IBUR3B, IBUR3C) during no fault is 2.15 A.

Figure 5.4 CT1 and CT3 Burden Currents at no fault condition
The eight-bus power system is simulated for all types of line to ground faults such as single line to ground (SLG), double line to ground (L-L-G) and three phase fault (L-L-L-G) but the results for the three phase faults are presented here. In the eight-bus system, the nominal RMS current flowing in the transmission line 1 and transmission line 2 is 2.15 A and the pickup value of current in both the hardware SEL 351S relay is specified as 6 A. The pickup value of current programmed in the SEL settings should be 1.5 times or greater than the nominal current.

Upon the occurrence of three phase fault on bus 8 on the transmission line 2 then the burden current in all the three phases of the CT1 increases abruptly to a very high value of 20 A, which is above the pickup value of current specified in the SEL 351S relay settings. This results in the generation of trip signal by the first SEL 351S overcurrent relay to open the BRK1. If the fault is cleared then the first SEL 351S relay generates a reclose signal to close the contacts of BRK1 after a delay of 65 cycles. The operation of BRK2 is controlled by circuit breaker control logic, which operates BRK2 in a sequential manner with BRK1 with a delay of one cycle. The BRK1 and BRK2 remain open if the fault is not cleared. Figure 5.5 show the CT1 currents and, BRK1 and BRK 2 trip, open and reclose signals after L-L-L-G fault.
When a three phase fault is applied on the transmission line 1 on bus-9 then the burden current in the CT3 goes beyond 20 A in all the three phases which causes the second SEL 351S relay to generate a trip signal to operate BRK3. Figure 5.6 show the burden current in all the three phases of CT3 and, trip, open and reclose signals for BRK3 and BRK4 after L-L-L-G fault.

The second hardware SEL 351S relay connected to transmission line 1 also performs similar to first SEL 351S relay for transmission line 2
5.3.2 Shipboard Power System

The shipboard power system shown in Figure 2.8 of Chapter II of this thesis is modified in order to conduct the test having multiple hardware SEL 351S overcurrent relay. The modified shipboard system is shown in Figure 5.7 where another cable 2 is developed similar to the cable 1. The line to ground fault is applied on bus-1 and bus-2 on the cable 1 and cable 2, respectively, by the fault inception logic as explained in section 3.5 of Chapter III of this thesis work.
Figure 5.7 Modified Shipboard Power System in RSCAD

Here, BRK1 and BRK2 are located on cable 1 while BRK3 and BRK4 are located on cable 2. The current transformer 1 (CT1) and potential transformer 1 (PT1) are located on cable 1 across BRK1 while current transformer 3 (CT3) and potential transformer 3 (PT3) are located on cable 2 across the BRK3. The current and voltages measured by CT1 and PT1 are fed to the first SEL 351S overcurrent relay to operate BRK1 located on cable 1 while the current and voltages measured by CT3 and PT3 are sent to the second SEL 351S relay to operate BRK3 located on cable 2. The BRK2 and BRK4 are operated in accordance with BRK 1 and BRK 3 by the circuit breaker control logic developed in RSCAD as explained in section 3.6 of Chapter III of this thesis.
The shipboard power system is simulated for 1.7 seconds with a time step of 95 microseconds on RTDS. The CT ratio of the current transformer 1 and current transformer 3 is 300:1. The nominal RMS value of current coming out of the CT1 is $176A/300 = 0.58A$ and from CT3 is $216/300 = 0.72A$. During no fault condition, the perfectly sinusoidal current and voltages are coming out of the current and potential transformers located at cable 1 and 2. Figure 5.8 shows the instantaneous current measured by CT1 (IBURA, IBURB, IBURC) and CT3 (IBUR3A, IBUR3B, IBUR3C) during no fault condition.

![Figure 5.8 CT1 and CT3 Burden Currents at no fault condition](image)

The shipboard power system is simulated for all types of line to ground faults but the results for the three phase faults are presented here. In the shipboard system, the nominal current flowing in the cable 1 and cable 2 is 0.58A and 0.72A respectively. The pickup value of current for the first hardware SEL 351S relay to operate BRK1 is

99
specified as 1A while the pickup value of current for second SEL 351S relay to operate BRK3 is 2A.

When a three phase fault is applied on the cable 1 on bus-1 of shipboard system then the burden current in the CT1 goes beyond 50 A in all the three phases which causes the first SEL 351S relay to generate a trip signal to operate BRK1. BRK2 operates in sequential manner with BRK1 with a delay of one cycle by the circuit breaker control logic. Figure 5.9 shows the burden current in CT1 for all the three phases, BRK1 and BRK2 open and reclose signals after L-L-L-G fault.

Figure 5.9 CT1 currents, BRK1 and BRK2 Trip, Open & Reclose Signals after L-L-L-G
When a three-phase fault is applied on cable 2 on bus-2 of the shipboard system, expected results were obtained.

5.4 Simulation Results with Multiple Software Relays in the System

This section of the chapter discusses about performing the test having multiple software overcurrent relay model connected at different locations on the test case power system. The software overcurrent relay model is explained in detail in section 4.2 of Chapter IV of this thesis. The software overcurrent relay model is modified by using a RMS calculator block present in the RSCAD component library instead of the analog signal sampler to convert the burden current coming out of the current transformers in to
RMS current. The functionality of the RMS calculator block is same as that of the analog signal sampler. RMS calculator block sample, filter and then calculate the RMS value of current flowing in the line/cable. Figure 5.11 shows the RMS calculator block present in the RSCAD library.

![RMS Calculator Block in RSCAD](image)

The eight-bus power system and shipboard power system are used as test case power systems for conducting the multiple software relays operation tests. The main difference between the multiple hardware relay operation and multiple software relay operation is that all the hardware relays used in the multiple hardware relay operation are replaced by the software overcurrent relay models in the multiple software relay operation. The simulation results on the eight-bus and shipboard power system are shown in the next sections.

5.4.1 Eight-Bus Power system

The modified eight-bus power system is shown in Figure 5.3 of section 5.2 of this thesis and it is used as a test case system to perform the test having multiple software relay models for different type of line to ground faults. The test case power system is
tested under different type of line to ground faults. The fault is applied on the transmission line 1 and transmission line 2 at bus-9 and bus-8, respectively, by using two fault inception logics. The simulation result for the three-phase fault is presented below.

The BRK1 and BRK3 are operated by two software overcurrent relay models while BRK2 and BRK4 are operated in accordance with BRK 1 and BRK 3 by the circuit breaker control logic developed in RSCAD as explained in section 4.2.4 of Chapter IV of this thesis.

The eight–bus power system is simulated for 1.7 seconds with a time step of 95 microseconds on RTDS. The CT ratio of the current transformer 1 and current transformer 3 is 300:1. The nominal RMS value of current coming out of the CT1 and CT3 is 646A/300=2.15 A. During no fault condition, the perfectly sinusoidal currents are coming out of the current transformers located at transmission line 1 and transmission line 2. Figure 5.4 shows the instantaneous current measured by CT1 (IBURA, IBURB, IBURC) and CT3 (IBUR3A, IBUR3B, IBUR3C) during no fault condition.

The burden currents flowing through the CT1 and CT3 are used to measure the RMS current by using RMS calculator block and are compared with the pickup value of current in the software relay models 1 and 3. The pick up value of current is specified as 6A in the software overcurrent relay models 1 and 3 to operate BRK1 and BRK3, which are located on two parallel transmission lines in the eight-bus system.

Three-phase fault (L-L-L-G) on the transmission line 2 on bus-8 of eight-bus system causes the IRMS current to go beyond the pickup value of current which results in the generation of trip signal by the software overcurrent relay model to open all the three phases of the BRK1. The software relay model closes the BRK1 after 65 cycles after the
fault is cleared. The BRK2 is controlled by circuit breaker control logic. The CT1 currents, BRK1 and BRK2 control signals after L-L-L-G fault are shown in Figure 5.12.

Figure 5.12 CT1 currents, BRK1 and BRK2 Trip, Open & Reclose Signals after L-L-L-G

The second hardware SEL 351S relay connected to transmission line 1 also performs similar to first SEL 351S relay for transmission line 2.

The trip signal is generated by the second software overcurrent relay model to open all the three phases of the BRK3 upon the occurrence of three phase fault on transmission line 1 on bus 9. The IRMS current will exceed the pickup value of current specified in the software relay model. After the fault clearance, a reclose signal is generated in BRK3 by the software relay model after 65 cycles to close the BRK3. The BRK4 operates after a
delay of one cycle in a sequential manner with BRK3 by the circuit breaker control logic. The CT3 currents, BRK1 and BRK2 trip, open and reclose signals are shown in Figure 6.13.

Figure 5.13 CT3 currents, BRK3 and BRK4 Trip, Open & Reclose Signals after L-L-L-G

5.4.2 Shipboard Power System

The fault inception logic is used to apply a line to ground fault on the bus-1 and bus-2 present on cable 1 and cable 2, respectively, of the shipboard power system. This section gives the simulation results for the three-phase (L-L-L-G) fault simulated on the shipboard power system.
The simulation time for the shipboard system on the RTDS was 1.7 seconds. There are two current transformers (CT1 and CT3) in the shipboard system with CT ratios 300:1. The currents entering into the CT1 and CT3 are 176A and 216A, respectively, while the current coming out of the CT1 and CT3 are 0.58A and 0.72 A. The CT1 and CT3 currents are shown in figure 5.8 for no fault condition.

The burden currents flowing through the CT1 and CT3 are used to measure the RMS current by using RMS calculator block and are compared with the pickup value of current in the software relay model 1 and 3. The pick up value of current is specified as 1A in the software overcurrent relay model 1 to operate BRK1 while the pickup value of current is specified as 3A in software relay model 3 to operate BRK3. BRK1 and BRK3 are located on two parallel cables in the shipboard power system.

When the three-phase fault (L-L-L-G) is applied on the cable 1 on bus-1 of shipboard power system then the IRMS current goes beyond the pickup value of the current as specified in the software relay model which results in the generation of trip signal by the software relay model to open all the three phases of the BRK1. After the fault clearance the software relay model generates a reclose signal after 65 cycles from the BRK1 tripping to reclose the BRK1. The BRK2 is controlled by circuit breaker control logic. Figure 5.14 shows the burden current in CT1 for all the three phases, BRK1 and BRK2 trip, open and reclose signals after L-L-L-G fault.
When three-phase fault (L-L-L-G) is applied on the cable 2 on bus-2 of shipboard power system then the second software overcurrent relay model generates a trip signal to open all the three phases of the BRK3 because the IRMS current goes beyond the pickup value of the current as specified in the software relay model. If the fault is cleared then the reclose signal is generated by the relay model after a delay of 65 cycles from the BRK3 opening to close the BRK3. The circuit breaker control logic operates BRK4 in sequential manner with BRK3 with a delay of one cycle. Figure 5.15 show the burden current in CT3 for all the three phases, BRK3 and BRK4 trip, open and reclose signals after L-L-L-G fault.
5.5 Coordination of Relays

Relay coordination is a widely used technique for the protection of power system from several decades. The function of a specific protective relay can be thought of as either primary or backup. When a relay (or a system of relays) is applied to protect its own system element (or zone of protection), it is thought of as a primary relay; when the function is to back up other relays for a fault at a remote location, it is serving as a backup relay. Usually, a specific relay provides both functions simultaneously; serving as a primary relay for its own zone of protection and as a backup relay for remote zones of protection. In this thesis work the relay coordination is performed on the shipboard as
well as on eight-bus power system by using hardware SEL 351S overcurrent relays as well as by using software overcurrent relay models, respectively.

5.6 Simulation Results for Hardware Relay Coordination

The simulation results for the hardware relay coordination on the shipboard and eight bus systems are presented in the following sections.

5.6.1 Shipboard Power System

The shipboard power system is modified in order to conduct the hardware relay coordination test. The specifications of the shipboard system are the same as those detailed in the section 2.5.1 of Chapter II of this thesis. One more circuit breaker (namely BRK 3) is added to the system which will be operated by a hardware SEL 351S relay to protect the NW generator side. The circuit breaker 1 (BRK1) and circuit breaker 3 (BRK3) are controlled by the two hardware SEL 351S overcurrent relay while circuit breaker 2 (BRK2) is controlled by software model of overcurrent relay. The relay connected to BRK 1 and BRK 2 provides the primary protection while relay operating BRK 3 provides back up protection to the BRK 1. Two different types of line to ground faults are applied on bus-1 on cable 1 of the shipboard system namely, FAULT 1 and FAULT 2. Figure 5.16 shows the modified shipboard power system.
Figure 5.16 Modified Shipboard Power System for Hardware Relay Coordination

The CT ratio of the current transformer 1 (CT1) and current transformer 2 (CT2) is 300:1. The nominal RMS values of current flowing through CT1 and CT2 at no fault condition are 0.58A and 0.85A, respectively. The shipboard system is simulated for 1.7 seconds on the RTDS for different types of line to ground fault. During the no fault condition, the nominal current flow into the system and there is no trip signal. The instantaneous current sensed by current transformers (CT1 and CT2) is sinusoidal as shown in Figure 5.17.
The pickup value of current specified in first SEL 351S relay to operate BRK1 is 1A while the pickup value of current for second SEL 351S relay to operate BRK3 is 2A. The operation of breakers for different cases of line to ground fault is explained below with simulation results.

5.6.1.1 Case 1: Operation of breakers after FAULT 1

FAULT1 is a line-to-ground fault which can be sensed by first hardware SEL 351S relay and software relay model to operate BRK1 and BRK2 in a sequential manner as explained in section 3.6 of this thesis. Lets assume that the FAULT 1 is present on the cable 1 of the SPS. Now at a fault condition the current exceeds the pickup value of current and a fault signal is generated. In this case the BRK1 is opened by the hardware relay 1 followed by the BRK2 opening by the software relay model with a delay of one cycle. BRK1 is then reclosed by hardware relay and BRK2 by software relay with delay of one cycle. Figure 5.18 shows the block diagram to show the tripping signal generated by hardware and software relays to operate BRK1 and BRK2 in a sequential manner with
a time delay between the operation of BRK1 and BRK2. Figures 5.19 and 5.20 shows the simulation results for the FAULT1 condition.

Figure 5.18 Operation of BRK1 and BRK2 after FAULT 1

Figure 5.19 CT1 & CT2 currents after L-L-L-G FAULT 1
5.6.1.2 Case 2: Operation of breakers after FAULT 2

Here, the FAULT 2 is a line-to-ground fault which can not be sensed by hardware SEL 351S relay 1. So, in this case BRK1 will not open and the NW generator side is left unprotected and will be prone to severe damage. So, for FAULT 2 the hardware SEL 351S relay 2 will operate BRK3 in order to protect the NW generator side. FAULT 2 will be sensed by the software model of relay and hardware SEL 351S relay 2 to operate BRK2 and BRK3 in a sequential manner with delay of one cycle in order to protect the NW generator side. Figure 5.21 shows the block diagram to show the tripping signal generated by software and hardware relays to operate BRK2 and BRK3 with a time delay between the operation of BRK2 and BRK3.
Figure 5.21 Operation of BRK2 and BRK3 after FAULT 2

At FAULT 2 condition, the first hardware SEL 351S relay does not generate a trip signal to open the BRK1. In that case, the trip signal is generated by the software relay model to open BRK2 after a delay of two cycles from the fault. After fault clearing, BRK2 is reclosed after getting the reclose signal from the software relay model. The BRK3 is operated by hardware SEL 351S relay 2 in a sequential manner with BRK2 with a delay of one cycle. Figures 5.22 and 5.23 shows the simulation results for the FAULT 2.

Figure 5.22 CT1 & CT2 currents after L-L-L-G FAULT 2
5.6.2 Eight-Bus Power System

The eight-bus power system is modified in order to conduct the hardware relay coordination test. The specifications of the eight-bus system are same as explained in the section 2.5.2.2 of Chapter II of this thesis. The main modification in the eight bus system is that an additional circuit breaker, namely BRK 3, operated by the hardware SEL 351S overcurrent relay is added. BRK 1 and BRK 2 provide primary protection while BRK 3 provides back up protection to the BRK2 in the system. BRK1 is controlled by software relay logic while BRK2 and BRK3 are controlled by two SEL 351S overcurrent relays. Two different types of line to ground faults are applied on bus-8 on the transmission line 2 of the system, namely FAULT 1 and FAULT 2, by using the fault inception logic as

Figure 5.23 BRK2 & BRK3 operation after L-L-L-G FAULT 2
explained in section 3.5 of this thesis. Figure 5.24 shows the modified shipboard power system.

![Figure 5.24 Modified eight-bus Power System for Hardware Relay Coordination](image)

The CT ratio of the current transformer 1 (CT1) and current transformer 2 (CT2) is 300:1. The nominal RMS value of current flowing through CT1 and CT2 at no fault condition is 2.15A and 4.20A, respectively. The eight-bus system is simulated for 1.7 seconds on the RTDS for different types of line to ground fault. During the no fault condition, the nominal current flow in to the system and there is no trip signal. The current sensed by current transformers (CT1 and CT2) are sinusoidal as shown in figure 5.25.
Circuit breaker 1 (BRK1) is operated by the software overcurrent relay model. The BRK2 and BRK3 are operated by two hardware SEL 351S overcurrent relays in a coordinated manner depending upon the type of fault. The pickup value of current specified in SEL 351S relay 1 to operate BRK2 is 6A while the pickup value of current for SEL 351S relay 2 to operate BRK3 is 12A. The operation of breakers for different cases of line to ground fault is explained below with simulation results.

5.6.2.1 Case 1: Operation of breakers after FAULT 1

FAULT 1 is a line-to-ground fault which can be sensed by software relay 1 and SEL 351S relay 1 to operate BRK1 and BRK2 in a sequential manner. Lets assume that the FAULT 1 is present on the transmission line 2. Now at a fault condition the current crosses the pickup value of current and a fault signal is generated. In this case the BRK1 is opened and reclosed first by software relay followed by the BRK2 opening and reclosing with a delay of half cycle by the hardware relay. Figure 5.26 shows the block diagram to show the tripping signal generated by software and hardware relays to operate
BRK1 and BRK2 in a sequential manner with a time delay between the operation of BRK1 and BRK2.

![Diagram of relay operation](image)

Figure 5.26 Operation of BRK1 and BRK2 after FAULT 1

At FAULT 1 condition, the trip signal is generated by the software relay to open BRK1. After the fault is cleared, BRK1 is reclosed after getting the reclose signal from the software relay model 1. The BRK2 is operated by hardware SEL 351S overcurrent relay in a sequential manner with BRK1 with a delay of one cycle. Figures 5.27 and 5.28 show the simulation results for the FAULT 1 condition.

![Simulation results](image)

Figure 5.27 CT1 & CT2 currents after L-L-L-G FAULT 1
5.6.2.2 Case 2: Operation of breakers after FAULT 2

Here, the FAULT 2 is a line-to-ground fault which cannot be sensed by SEL 351S hardware relay 1. So, in this case BRK2 will not open, the load side is left unprotected and will be prone to severe damage. So, for FAULT 2 the SEL 351S relay 2 will operate BRK3 in order to protect the load side. FAULT 2 will be sensed by software models of relay and the hardware SEL 351S relay 2 to operate BRK1 and BRK3 in a sequential manner with delay of one cycle in order to protect the load side. Figure 5.29 shows the block diagram to show the tripping signal generated by software and hardware relay to operate BRK1 and BRK3 with a time delay.
At FAULT 2 condition, the trip signal is generated by the software relay to open BRK1. After the fault is cleared, BRK1 is reclosed after getting the reclose signal from the software relay. The hardware SEL 351S relay 1 is not able to sense the FAULT 2 and in order to protect the load side, the BRK3 is operated by second SEL 351S relay in a sequential manner with BRK1 with a delay of one cycle. Figure 5.30 and 5.31 shows the simulation results for the FAULT 2.
5.7 Simulation Results for Software Relay Coordination

In the software relay coordination, the hardware relays used in the hardware relay coordination are replaced by modified software overcurrent relays and the power system test cases are simulated for the same fault scenarios. Figure 5.32 shows the modified software overcurrent relay, which is used for conducting the software relay coordination. The software relay logic is modified and made it operate for different types of line to ground fault.
The simulation results for the software relay coordination on shipboard as well as on the eight-bus power system are presented in the next sections.

5.7.1 Shipboard Power System

The shipboard power system is modified in order to conduct the software relay coordination. Figure 5.16 shows the modified shipboard power system which was used to conduct the software relay coordination. The specifications of the shipboard system are same as explained in the section 2.5.1 of Chapter II of this thesis. The modification is that all the circuit breakers i.e., circuit breaker 1 (BRK1), circuit breaker 2 (BRK2) and circuit breaker 3 (BRK3) are controlled by three modified software model of overcurrent relay. BRK 1 and BRK 2 provides the primary protection while BRK 3 provides back up protection.
protection to the BRK 1 to protect the NW generator side. Two different types of line to
ground faults (FAULT 1 and FAULT 2) are applied on bus-1 on cable 1 of the shipboard
system.

For the shipboard system, the current transformer 1 (CT1) and current transformer
2 (CT2) have the CT ratio of 300:1 and the normal RMS currents coming out of the CT1
and CT2 are 0.58A and 0.85A at no fault condition. The shipboard power system is
simulated for different fault conditions for 1.7 seconds on RTDS. The instantaneous
currents sensed by current transformers (CT1 and CT2) at no fault condition are shown in
Figure 5.17.

The circuit breakers are operated by modified software model of relays in a
coordinated manner depending upon the type of fault. The pickup value of current
specified in modified software relay model 1 and 2 to operate BRK1 and BRK2 is 1A
while the pickup value of current for modified software relay model 3 to operate BRK3 is
2A. The operation of breakers for different cases of line to ground fault is explained
below with simulation results.

5.7.1.1 Case 1: Operation of breakers after FAULT 1

FAULT1 is a line-to-ground fault which can be sensed by the modified software
model of relay 1 and 2 to operate BRK1 and BRK2 in a sequential manner as explained
in section 4.2.4. Lets assume that the FAULT 1 is present on the cable 1 of the SPS. Now
at a fault condition the current exceeds the pickup value of current and a fault signal is
generated. In this case the BRK1 is opened and reclosed first followed by the BRK2
opening and reclosing with a delay of one cycle. Figure 5.33 shows the block diagram to
demonstrate the tripping signal generated by software relay to operate BRK1 and BRK2 with a time delay. Figures 5.34 and 5.35 show the simulation results for the FAULT1 condition.

Figure 5.33 Operation of BRK1 and BRK2 after FAULT 1

Figure 5.34 CT1 & CT2 currents after L-L-L-G FAULT 1
5.7.1.2 Case 2: Operation of breakers after FAULT 2

Here, the FAULT 2 is a line-to-ground fault which cannot be sensed by modified software relay 1 and the BRK1 will not operate which leaves the NW generator side unprotected. So, for FAULT 2 the modified software model of relay 3 will operate BRK3 in order to protect the NW generator side. FAULT 2 will be sensed by modified software models of relay 2 and 3 to operate BRK2 and BRK3 in a sequential manner with delay of few cycles in order to protect the NW generator side. Figure 5.36 shows the block diagram to show the tripping signal generated by software relay, and the BRK2 and BRK3 opening and reclosing sequence with a time delay between the operation of BRK2 and BRK3.
At FAULT 2 condition, the software relay model 1 does not generate a trip signal to open the BRK1. In that case, the trip signal is generated by relay model 2 to open BRK2 after a delay of two cycles from the fault. After fault clearing, BRK2 is reclosed after getting the reclose signal from the software relay model 2. The BRK3 is operated in a sequential manner with BRK2 with a delay of one cycle. Figure 5.37 and 5.38 shows the simulation results for the FAULT 2.
5.7.2 Eight-Bus Power System

The modified eight-bus power system shown in Figure 5.22 is used to conduct the software relay coordination test. The specifications of the eight-bus system are same as explained in the section 2.5.2.2 of Chapter II of this thesis. The main modification in the eight bus system is that all the circuit breakers (BRK1, BRK2, BRK3) are controlled by software relay models. BRK 1 and BRK 2 act as the primary protection while BRK 3 provides back up protection to the BRK2 to protect the load side. Two different types of line to ground faults are applied on bus-8 on the transmission line 2 of the system, namely FAULT 1 and FAULT 2, by using the fault inception logic as explained in Chapter III of this thesis.
The CT ratio of the current transformer 1 (CT1) and current transformer 2 (CT2) is 300:1. The nominal value of current flowing through CT1 and CT2 at no fault condition is 2.15A and 4.20A, respectively. The eight-bus system is simulated for 1.7 seconds on the RTDS for different types of line to ground faults. During no fault condition, the nominal current flow into the system and there is no trip signal. The current sensed by current transformers are sinusoidal as shown in Figure 5.25.

The pickup value of current specified in modified software relay model 1 and 2 to operate BRK1 and BRK2 is 6A, while the pickup value of current for modified software relay model 3 to operate BRK3 is 12A. The operation of breakers for different cases of line to ground faults is explained below with simulation results.

5.7.2.1 Case 1: Operation of breakers after FAULT 1

FAULT 1 is a line-to-ground fault which can be sensed by modified software model of relay 1 and 2 to operate BRK1 and BRK2 in a sequential manner as explained in section 4.2.4. Lets assume that the FAULT 1 is present on the transmission line 2 of the eight-bus system. Now at a fault condition the current crosses the pickup value of current and a fault signal is generated. In this case the BRK1 is opened and reclosed first followed by the BRK2 opening and reclosing with a delay of one cycle. Figure 5.39 shows the block diagram to show the tripping signal generated by software relays to operate BRK1 and BRK2 in a sequential manner with a time delay.
At FAULT 1 condition, the trip signal is generated by relay model 1 to open BRK1. After fault clearing, BRK1 is reclosed after getting the reclose signal from the software relay model 1. The BRK2 is operated in a sequential manner with BRK1 with a delay of one cycle. Figures 5.40 and 5.41 show the simulation results for the FAULT 1.
5.7.2.2 Case 2: Operation of breakers after FAULT 2

Here, the FAULT 2 is a line-to-ground fault which cannot be sensed by modified software relay 2. For FAULT 2 the modified software model of relay 3 will operate BRK3 in order to protect the load side. FAULT 2 will be sensed by modified software models of relay 1 and 3 to operate BRK1 and BRK3 in a sequential manner with delay of few cycles in order to protect the load side. Figure 5.42 shows the block diagram to show the tripping signal generated by software relay, and BRK1 and BRK3 opening and reclosing sequence with a time delay between the operation of BRK2 and BRK3.
At FAULT 2 condition, the trip signal is generated by software relay model 1 to open BRK1. After fault clearing, BRK1 is reclosed after getting the reclose signal from the software relay model 1. The software relay model 2 is not able to sense the FAULT 2 so the BRK2 does not open. So, in order to protect the load side, the BRK3 is operated in a sequential manner with BRK1 and a delay of two cycles. Figures 5.43 and 5.44 show the simulation results for the FAULT 2.
5.8 Comparison of Hardware and Software Relay Coordination

The hardware and software relay coordination for the shipboard and eight-bus power system are compared in this section. In chapter IV it is already validated that the software overcurrent relay model is replicating the same functionality as that of the hardware overcurrent relay. Table 5.1 shows the time taken for the trip signal to be generated by the relays, breakers opening and reclosing time for three phase fault condition on the shipboard power system during the hardware and software relay coordination, respectively. In Table 5.1, ΔT_1 is the time difference between the operation of BRK1 and BRK2 by the overcurrent relay model (either hardware or software) while ΔT_2 is the time difference between the operation of BRK2 and BRK3 by the overcurrent
relay model (either hardware or software). The comparison of the ΔT_1 and ΔT_2 for the hardware relay coordination and software relay coordination on the SPS shows that the results for both the cases are comparable. This concludes that the modified software overcurrent relay model is working in a similar way as that of the hardware SEL 351S overcurrent relay.

Similarly, Table 5.2 shows the time taken by the relays to generate a trip signals, breakers opening and reclosing time for three phase fault condition on the eight-bus power system during the hardware and software relay coordination respectively. In Table 5.2, ΔT_1 is the time difference between the operation of BRK1 and BRK2 by the hardware (or software) overcurrent relay while ΔT_2 is the time difference between the operation of BRK1 and BRK3 by the hardware (or software) overcurrent relays. The ΔT_1 and ΔT_2 for the hardware and software relay coordination on the eight-bus power system
are compared which shows that the modified software overcurrent relay model is replicating the same functionality as that of the hardware SEL 351S overcurrent relay.

<table>
<thead>
<tr>
<th>Sec= Second</th>
<th>Eight Bus System</th>
<th>Hardware Relay Coordination</th>
<th>Software Relay Coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BRK 1 (Sec)</td>
<td>BRK 2 (Sec)</td>
<td>∆T1 (Sec)</td>
</tr>
<tr>
<td>FAULT 1 (L-L-L-G)</td>
<td>0.3547</td>
<td>BRK2 – BRK1</td>
<td>0.3478</td>
</tr>
<tr>
<td>Trip</td>
<td>0.3701</td>
<td>0.38680</td>
<td>0.0167</td>
</tr>
<tr>
<td>Breaker Opening</td>
<td>0.4213</td>
<td>0.4384</td>
<td>0.0171</td>
</tr>
<tr>
<td>Reclose Signal</td>
<td>1.4931</td>
<td>1.5098</td>
<td>0.0167</td>
</tr>
<tr>
<td>Breaker Reclose</td>
<td>1.5425</td>
<td>1.5594</td>
<td>0.0169</td>
</tr>
<tr>
<td>FAULT 2 (L-L-L-G)</td>
<td>0.3498</td>
<td>BRK3 – BRK1</td>
<td>0.3587</td>
</tr>
<tr>
<td>Trip</td>
<td>0.3609</td>
<td>0.3948</td>
<td>0.0339</td>
</tr>
<tr>
<td>Breaker Opening</td>
<td>0.4136</td>
<td>0.4459</td>
<td>0.0321</td>
</tr>
<tr>
<td>Reclose Signal</td>
<td>1.4921</td>
<td>1.5250</td>
<td>0.0329</td>
</tr>
<tr>
<td>Breaker Reclose</td>
<td>1.5549</td>
<td>1.5885</td>
<td>0.0336</td>
</tr>
</tbody>
</table>

The results of the hardware and software relay coordination conducted on shipboard and eight-bus power system are compared and it shows that the software relays are giving almost the same results as given by the hardware SEL 351S overcurrent relays.

5.9 Summary

This chapter describes the procedure to connect two hardware SEL 351S overcurrent relays to the RTDS. The software overcurrent relay model was modified by adding the RMS calculator block instead of analog signal sampler to calculate the RMS current from the burden current coming out of the current transformer. The shipboard and eight-bus power systems were used as test cases to conduct the multiple relay and relay...
coordination tests. The simulation results for the eight-bus and shipboard system are presented for different fault scenarios having multiple hardware (or software) relays and for hardware (or software) relay coordination. The hardware and software relay coordination simulation results and timing performance were compared and a conclusion was made that the modified software overcurrent relay model performs satisfactorily for the relay coordination.
CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Power system protection is still one of the primary focus of the utility companies. Real time simulation is an effective and efficient way to test the equipment for severe conditions and helps to take the corrective measures before installing them to the main power system. Real time digital simulator (RTDS) is a hardware power system simulation tool which helps to run the power system models designed in RSCAD software in real time. RTDS helps to conduct the test like hardware in the loop (HIL), software in the loop (SIL), multiple relay operation and coordination of relay testing. HIL testing is a widely used technique in which a hardware device like relay or motor etc are connected in a closed loop with the power system model. The SIL test is similar to HIL test but the basic difference is that a hardware device used in the HIL test is replaced by a software prototype of the hardware device and connected in close loop with the power system model for different fault scenarios. In multiple relay operation and relay coordination tests, multiple numbers of hardware devices (or software prototype of the hardware device) are connected to the power system model and simulated for different fault scenarios in order to observe the system and equipment behavior.
The shipboard and terrestrial power systems are used as test case power system in this thesis work. RSCAD software is used for the development of power system models, overcurrent relay model and control logics. The software overcurrent relay model is developed in RSCAD software and then tested in real time for the shipboard and terrestrial power system.

6.2 Contributions

The main contributions of thesis work are summarized as:

- A hardware interface was developed to conduct the hardware-in-the-loop (HIL) test on the shipboard power system (SPS) and terrestrial power system (TPS) models developed in RSCAD software for different fault conditions using SEL 351S overcurrent relay (or GE D60 distance relay) and Real Time Digital Simulator (RTDS).

- Different control logics like fault inception logic, circuit breaker control logic, and sampling logic were developed in RSCAD to conduct the HIL test.

- The HIL simulation results provide an outline to design the software overcurrent relay model in RSCAD software suite in order to replicate the functionality of the hardware SEL 351S overcurrent relay.

- After developing the software prototype of the hardware overcurrent relay, the real time software in the loop (SIL) test was conducted on the SPS and TPS for different fault conditions.

- The results of the HIL and SIL test were compared to validate the software overcurrent relay model.
The developed hardware interface setup was modified in order to interface two hardware SEL 351S overcurrent relays with the RTDS to conduct multiple relay operation and relay coordination simulation on the modified SPS and eight-bus system.

The developed software overcurrent relay model was modified to add more functionality into it to conduct multiple software relay operation and software relay coordination on the SPS and eight-bus power.

Differential relay model was also developed in LabVIEW software and tested successfully for different fault conditions.

6.3 Future Work

- The hardware interface setup developed during the thesis work can be utilized for conducting different tests like differential relay, overcurrent relay or distance relay on the small as well as on the large power systems.

- The developed software overcurrent relay model can be further modified to add more functionality to develop the software model of distance relay.

- The developed software overcurrent and differential [11] relay model can be utilized to perform the software relay coordination on the small as well as on the large power system.

- The developed LabVIEW differential relay model can be tested in real time for different fault conditions.
• Other power system applications tool such as stability index, reconfiguration algorithm can be implemented in hardware/software in the loop using developed framework.
REFERENCES

[34] LabVIEW instruction manual available on website: http://www.ni.com/labview/

[45] Introduction to LabVIEW course- Six Hours
http://www.csee.umbc.edu/~plusquel/415/labview/LV_Intro_Six_Hours.pdf

